
TOKENPASSER

A PETRI NET SPECIFICATION TOOL

by

Michael Mittmann

Rensselaer Polytechnic Institute

Electrical, Computer, and Systems Engineering

Troy, New York 12180-3590

January 1991

CIRSSE REPORT #81

CONTENTS

LIST OF FIGURES v

ACKNOWLEDGMENT vi

ABSTRACT vii

i. INTRODUCTION I

i.i Motivation i

i.i.I System Specification i

1.1.2 Distributed Hierarchical Systems 1

1.2 Petri Nets for Analysis of Distributed Systems 2

1.3 Goals of This Project 2

1.4 Application: The CIRSSE Platform 3

1.5 Thesis Outline 4

2. LITERATURE REVIEW 5

2.1 Petri Net Theory 5

2.1.1 Petri nets 5

2.I.2 Petri Net Transducers 8

2.2

2.1.3 Coordination Structures 10

Current Tools 10

2.'2.1 Petri Net Tools 10

,

2.'2.2 Distributed System Tools 13

PROBLEM STATEMENT 17

3.1 Project Specification 17

3.2 Project Design 17

3.2.1

3.2.2

3.2.3

3.2.4

Communication 17

Data Structures 18

Flow of Control 20

User Interface 22

4° CASE STUDY 24

4.1 CII_SSE System Overview 24

4.1.1 Goals 24

4.1.2 System Components 25

4.2 System Command Language and Task Grammar 29

4.3 Coordination Structures 30

4.3.1 The Petri Net Transducer for the Dispatcher 30

4.3.2 Petri Net Transducer for the Vision Coordinator 35

4.3.3 Petri Net Transducer for the Gripper Coordinator 40

4.3.4 The Petri Net transducer for the Arm Coordinator 42

4.4 Analysis 45

4.4.1 Structural Analysis 45

4.4.2 Simulation 46

5. CONCLUSIONS AND FUTURE RESEARCH 51

5.1 Summary and Conclusions 51

5.2 Future Research and Modifications 52

LITERATURE CITED 54

APPENDICES 56

A. THE TokenPasser CODE 56

A.I

A.2

A.3

A.4

A.5

A.6

A.7

A.8

A.9

A.10

A.ll

Compiling Instructions 56

main.c 58

draw.c 66

makepet.c 78

menu.c 90

petLib.c 94

petri.c 104

postn.c 108

read_socket.c 110

sock_connect.c 115

sock_open.c 118

'4.

111

A.12 tr_nsform.c 122

A.13 window..manager.c 132

B. NET DESCRIPTIONS 137

B.I setup_disp.c 137

B.2 setup..axm.c 148

B,3 setup.grip.c 152

B.4 setup_vision.c 155

iv

LIST OF FIGURES

Figure 2.1

Figure 2.2

Figure 2.3

Figure 3.i

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

A Petri net with tokens

The configuration of PNTs 9

An Olympus Implementation 16

The Data Structures of the TokenPasser Program 21

The Simplified Dispatcher Architecture 31

The Dispatcher Architecture 33

The Vision Petri Net Transducer 36

The Gripper Petri Net Transducer 40

The Arm Petri Net Transducer 43

Variations in Transmission time with Distance and Data Size . 47

Delay increases when sockets are used to communicate on a

single machine 48

There is no particular benefit to placing the Dispatcher on the
file server 49

ACKNOWLEDGMENT

I would like to thank Professor George Saridis the guidance and support given to me

during my research. I would also like to thank Dr. Fei-Yue Wang for the tremendous

amount of help developing and clarifying this thesis. Finally I would like to thank

Mr. Krishnamoorthy for his help with displaying Petri nets on Xwindows.

vi

ABSTRACT

In computer program design it is essential to know the effectiveness of different

design options in improving performance, and dependability. This paper provides a

description of a CAD tool for distributed hierarchical Petri nets.

After a. brief review of Petri nets, Petri net languages, and Petri net trans-

ducers, and descriptions of several current Petri net tools, the specifications and

design of the TokenPasser tool are presented. TokenPasser is a tool to allow design

of distributed hierarchical systems based oa Petri nets.

A case study for an intelligent robotic system is conducted, a Coordination

structure with one dispatcher controlling three coordinators is built to mode[a

proposed robotic assembly system. The system is implemented using TokenPasser,

and the results are analyzed to allow judgment of the tool.

vii

CHAPTER 1

INTRODUCTION

1.1 Motivation

I.I.I System Specification

Perhaps the most critical step in system development is the specification stage.

It has been estimated that the cost of reworking an error discovered in the coding

phase of a project is 50 to 200 times more expensive than fixing an error discovered

during specification [4]. In addition to reducing the cost (and development time) of

a system, a good specification insures that. the program does the desired task, and

allows better estimates of the hmctionality and the time to produce a system.

Some products allow automatic translations of specifications into runnable

code. These tools help with system design in many ways, including

• Reducing the number of errors introduced in converting specifications to code.

• Allow quicker adaptation to changer[specifications.

• Allow easier testing of the results of specification modifications.

• Assisting the developers in program verification.

1.1.2 Distributed Hierarchical Systems

Hierarchical distributed systems have been becoming more common, and more

important. Hierarchical controllers process commands sent from higher levels, syn-

chronize activities of lower level machines, and report states back to other people or

processes. If this controller is controlling a distributed system, most processes will

be asynchronous, synchronizing only when the controller requires it. A well designed

2

hierarchical controller will also allow modular connections of controlled processes,

allowing for a much more versatile system.

1.2 Petri Nets for Analysis of Distributed Systems

Due to their ability to allow both synchronous and _ynchronous activities,

Petri nets are good tools for simulating and modeling distributed systems. Petri nets

also allow rigorous mathematical amalysis, including guaranteeing liveness, deadlock

properties, reversability and boundedness. Since stochastic Petri nets can also be

modeled as Markov chains, models can be mathematically analyzed to allow per-

formance estimates. Finally, conventional Petri net graphical notation is intuitively

easy to understand, thus allowing people to easily (if informally) analyze the net by

playing the "token game".

Since Petri nets have nice specification properties (easy to understand, rig-

orously defined, versatile, analyzable, diverse modeling capabilities), and they can

be automatica£1y translated to code they are an ideal tool for rapid prototyping of

distributed systems.

1.3 Goals of This Project

Given the above motivation, the TokenPasser code was written to allow a user

to define coiored Petri net transducers (CPNT) which pass tokens across internet

domain ethernets to allow rapid prototyping of distributed hierarchical control sys-

tems. TokenPasser, when compiled with a suitable net definition file, allows the user

to run any number of CPNTs which can communicate with the controller CPNT

via sockets. The user can also enable a display of any or all of the CPNTs to allow

monitoring of the progress of commands it_ the net. With the display off, the pro-

gram runs at full speed, allowing testing of speed and system loading of the designed

net. Finally, routines or programs can be attached to each transitions in the net,

allowing more complete prototyping of the system, by attaching the routines which

will actually be in the final system, or stubs which simulate the output or delay of

the expected routine.

1.4 Application: The CIRSSE Platform

A platform system for robotic construction in space is currently under devel-

opment at the NASA Center for Intelligent Robotic Systems for Space Exploration,

Rensselaer Polytechnic Institute. The system consists of a platform with two PUMA

manipulators mounted on moving bases. A vision system with five cameras is incor-

porated into the system for object identification and location determination. The

task scenario for the system is to assemble strut structures in a dynamic and uncer-

tain environment on space stations.

A major difficulty faced by the system is the long delay in communication

between earth and the space station, therefore in order to make the system able

to execute the construction in space, an intelligent control system with minimum

human interaction has to be designed for the system.

To this end. the theory of Hierarchical Intelligent Control System de-

veloped by Saridis and his colleagues [20. 21, 24] has been applied here to design

the system architecture of the platform system. This is accomplished by arranging

the system into three levets: the Organization, Coordination, and Execution Lev-

els, hierarchically ordered according to the principle of Increasing Precision with

Decreasing Intelligence. The function of the Organization Level is to define con-

struction missions and generate the high level task plans for some specific assembly

tasks. The plans include the specificatiou of structure configuration, strut/node

assembling sequence, and motion commands. The Coordination Level serves as an

interface between the Organization and Execution levels. Its main function is to

translate the higher level task plans into the specificoperation instructions and co-

ordinate their execution. Finally, the Execution Level is to executethe instructions

usingdevices in this level.

The specification and testing of the coordination level of the platform system

is an ideal test for the TokenPaaserprogram, and the casestudy section of this

paper dealswith the developmentand testing of tha_;communicationsprotocol.

1.5 Thesis Outline

This thesis is organizedin five chapters and two appendices. Chapter 2, the

literature review, is divided into two sections. The first section discussesPetri nets,

Petri net languages,and Petri net transducers. The secondsection discussessome

of the Petri net tools available for system modeling and creation, then goes into de-

scribes in further detail two tools for distributed system design. Chapter 3 presents

the problem statement in terms of a project specification, then details the design

of the project. Chapter 4 presents a case study, the dispatcher for a distributed

robotic arm control system. The chapter presents the physical system being used,

details the design of the Petri net transducer controllers for each subsystem, and

provides a structural analysis and the results from a distributed simulation of this

system. Chapter 5 summarizes the thesis with conclusions and gives suggestions

for further development of the TokenPasser tool. Appendix A gives the C code for

the TokenPasser program. Appendix B gives the C code for the descriptions of the

developed Petri nets.

CHAPTER 2

LITERATURE REVIEW

2.1 Petri Net Theory

2.1.1 Petri nets

In this section we give a brief introduction to Petri net theory. Note that

although only ordinary Petri nets are treated here, we will use the concept of colored

Petri nets in our model for the coordination level, since it has been proven that as

long as the number of colors is finite the colored Petri net model is equivalent to a

one or more ordinary Petri nets[181.

Petri nets are tools for modeling the dynamic behavior of discrete event sys-

terns. They consist mainly of two types of elements: places and transitions. The

placesrepresent the state of the system, while the transitionsrepresent events which

change the state of the system. A place can contain a non-negative number of to-

kens. The state of the system modeled by a Petri net isgiven by its marking (the

number of tokens in each place).The system evolves by firingtransitionsaccording

to the execution rule described in definition 2.4.

Definition 2.1 A Petri net is a quadruple.

N=(P,T.I,O) where:

1. P and T are finite sets of places and transitions, where

P_T=G andPUT¢O

"2. I:PxT ---* Z is the input fl, nction,

3. O:P xT -- Z is the output function.

where Z is the set of natural numbers.

5

6

Pl P_

Figure 2.1: A Petri net with tokens

A Petrinet can be represented by a bipartitedirected multigraph, the Petri

net graph. Places axe representedby circles,and transitionsby bars. There isan

arc joininga place p to a transitiontill"I(p,t):_O,then p iscalledthe input place of

t.Analogously, there isan arc from tto p iffO(p,t) _ O, then p iscalledthe output

place of t.Natural numbers [(p.t)and O(p,t) are calledthe weights of the arcs.

Definition 2.2 A rnarkm 9 m of a Petri i_et N is a function m:P_Z, m gives the

number of tokens in each place p EP.

A token can be represented by a dot. Figure 2.1 shows a Petri net with it's

initial marking rno(pl) = mo(p_,) = 1, too(p3)= 0.

Definition 2.3 A transition t is enabled with respect to a marking m if[" m>[(t)

Definition 2.4 (execution rule) Firing an enabled transition t consists of remov-

ing I(p,t) tokens from each input place p and adding O(p,t) tokens to each output

place p. Let rnl be the new marking resulting from firing t under the marking rno,

then rn_ = rn0 +O(t) - [(t}.

Definition 2.5 (reachability set) The teachability set, R(m), for a Petri net N

with initialmarking m isthe set of allmarkings of N which, can be reached from m

by firinga finitenumber of transitionsof N.

The following axe important properties for Petri nets:

Definition 2.6 (Deadlock) A deadlock occurs in a Petri net when a marking is

reached where no transitionsin the net can be firedfrom that point on.

Definition 2.7 (Liveness) A Petri net is live with respect to a marking m if, for

any marking in R(m), it is possible to fire any transition in the net either immedi-

ately, or after firing a sequence of other transitions. Liveness guarantees the absence

of deadlocks.

Definition 2.8 (Reversibility) A Petri net is reversible with respect to eL mark-

ing m if for every m'E R(m), mER(m'). Reversibility guarantees that the system

modeled by the Petri net can re-initialize itself. This is important for error recovery.

Definition 2.9 (Boundedness) A Petri net is bounded with respect to a marking

m if there exists a finite number k, such that, for any marking in R(m) the number

of tokens in each place in the Petri net is less than or equal to k. A net which is

bounded by the value k is said r.o be k-bounded, if k = 1, the net is "safe".

2.1.1.1 Petri Net Languages

The purpose of introducing Petri net language is to characterize the behavior

of a Petri net mode[by the specification o[" action sequences of the net. Although

various formulations for PNL have been suggested in the literature [19], in order to

be consistent with our definition of Petri _et transducer which will be introduced

later, we give a general definition for PNL.

8

Definition 2.10 A Petri net language generated by a labeled Pert/r_et 7 = (N, E, _,/_, F

is a set of strings over E

L(_) = _(.) _ r_'lla e L(N,_) and 6(U,_) e F

where

• N = (P,T,I.O) is a Petri net with the initial marking #.

• E is a finite alphabet.

• _ :T-_ (= u {_}) is a labeli.9/u_ctio_.

• F C_ R(#) is the set of final markings.

Note that the superscript " denotes the set of all strings of symbols formed from the

stared alphabet, including the empty string.

Different types of PNL can be obtained by considering various restrictions

placed on the labeling function 3 and the final marking set F.

2.1.2 Petri Net Transducers

Definition 2.11 A Petri net transducer (PNT), M is a 6-tuple,

M =(N.E, ,._k._r. #, F) where

• N=(P,T,I.O) is a Petri net with an initial marking _.

• E is a finite input alphabet.

• A is a finite output alphabet.

• o" is a translation mapping from T ;<(E tj ,\) to finite sets of A'.

• FC_R(#) is a set of final markings.

Input hend

ll

l

Input tape

Petri Net Controller

Output tape

Output head

Figure 2.2: The configuration of PNTs

Physically, E may represent the set of primitive tasks for task planning, and _x the

primitive set of operations for task execution.

A PNT can be pictured as shown in figure 2.2. There axe three parts to a

PNT: an input tape, a Petri net controller, and an output tape. The behavior of

a PNT can be conveniently described in terms of the configuration of the PNT. A

configuration of PNT M is defined as the triple (m. x, y) where m ER(/s) is the

current state (or marking) of Petri net M: xE _" is the input sting of the remaining

input tape, with the leftmost symbol of x _lnder the input head; yE _" is the output

string emitted up to this point.

An investigation of the language properties of PNTs in [25] indicates that

PNTs are self-consistent models, and therefore can be used to model that dispatcher

and coordinators consistently. Wang [25] discusses the advantages of synchronous

composition as a mechanism to coordinaLe two PNTs, and the language r_ulting

from this composition.

10

2.I.3 Coordination Structures

A coordination structure (CS) is constructed in [23] by integrating Petri net

transducer models of the dispatcher and coordinators through a set of connection

points. The connection constraJnts in the definition of a CS guarenetee that each

coordinator only receives tasks from the dispatcher when the coordinator is available,

and the coordinator can only report the execution results when the dispatcher is

ready.

Two useful theorems axe proven in [23]. They are:

Theorem 1: The Petri net underlying a CS is bounded if the Dispatcher and all

of the Coordinators are bounded.

Theorem 2: The Petri net underlying a CS is live if the Dispatcher and all the

Coordinators are live.

2.2 Current Tools

2.2.1 Petri Net Tools

Petri nets have been extensively used for modeling distributed systems, They

axe very popular because of their capability of clearly describing concurrency, con-

flicts and synchronization of processes.

There axe many Petri net tools which have been developed to assist in program

design. These tools generally fit into one or" two classes:

1. Design tools which assist in the construction of Petri nets, and allow one to

determine several properties of the nets via either simulation or mathematical

analysis[ll. 15, 13].

2. Tools which assist in the creation of logic controllers. Normally these tools take

a Petri net description of a system and automatically translate that description

into some sort o[executable code[16.2, 8, 17].

11

Realistically the second group of tools is only likely to be used on nets which have

been verified (for whatever criterion the designer is interested in) with one or more

of the firstset of tools.

This is a brief summary of the leading Petri net tools:

2.2.1.1 GreatSPN

This tool, as described in [7], provides a graphic editor for easy construction

and editing of Petri nets with timed, immediate, and stochastic transitions. It is

currently being expanded to include colored nets. It's analysis capabilities include

calculation of place and transition invariants, boundedness, steady state token dis-

tribution, and time based performance. The performance can be calculated through

either "Monte Carlo" simulations, or through analysis of the embedded Markov

chain. GreatSPN alsO allows the user to debug the system by playing the "token

game".

GreatSPN is somewhat limited in it's ability to analyze large nets, and also

doesn't support connection of any two previously designed nets.

2.2.1.2 SPNP

This tool, as described in [I0] reads a text description of a Generalized Timed

Petri Net model, builds the embedded Markov chain, and the teachability graph for

that model, solves the steady state equations for the Markov chain, and computes

any "resource estimates" (means and distributions) requested in the model input.

This analysis is comparatively fast. _uad can handle very large nets, however

writing the text description of any large net is somewhat difficult, and is likely to

be error prone. To simplify writing the text description, there do exist tools for

translating GreatSPN net descriptions into the input files for SPNP.

12

2.2.1.3 Design/IDEF, Design/CPN

Design/IDEF[11] translates from an IDEF specification to a Colored Petri Net

description. These descriptions can then be analyzed by the Design/CPN package

by playing the "token game". The Design/CPN package also supports creation and

editing of Colored Petri Nets, including the ability to combine two different nets by

substitution, invocation, or fusion. The CPN package also supports attaching code

segments to transitions, so that these code segments can calculate values for output

tokens, or perform other functions.

2.2.1.4 GR,ASPIN

GRASPIN[11] supports a graphic design of Predicate/transition nets and Pr/E

nets. The tool can check the consistency, completeness and termination properties of

the nets. The toot allows simulation of these nets, teachability and liveness analysis,

transformation from P/T nets to specifications, and finally compilation of the net

to lisp functions.

2.2.1.5 PACE

Pace [11] system allows graphical editing of hierarchical nets, with inhibitor

arcs (an extension which makes Petri nets equivalent to Turing machines, but re-

duces the analyzableity of the net). From this description the tool can generate a

C program with equivalent behavior.

The analysis available with this tool is a "token game" simulator with both

forward and backward simulation, breakpoints, and modification of the net during

simulation.

13

2.2.1.8 TEBE

TEBE [11] takes the 1-safe net and produces a reduced net performing the

same function.

2.2.2 Distributed System Tools

Other than Petri net modeling systems, which could model distributed systems

by modeling the the communication network, none of the Petri net tools found dealt

with distributed systems. There are, however, several systems which allow design

of distributed controllers. Two approaches are detailed here. The first is interesting

due to the improvement in the development times of the built systems. The second

is an example of a distributed system controller design tool built on the Unix system.

2.2.2.1 C-nets

Murata et al. [16] Describe a Control net (C-net), an enhancement of a Petri

net which they use to build a micro-computer based controller which controls some

machinery by running the C-net.

A C-net is defined by the [0-tuple CN = (P,T, I, O, _5,_, r/, U, V, M) where P,

T, I, O and m are the same _ in the standard Petri net model. 6, _, and r/are called

process I/O functions, and U and V are process status functions. These functions

are used to define process interfaces and process statuses.

Process I/O Functions Let A be a set of control signals (zi) and E a set of

observable signals (_'ij) then &P--,A, _:P--E, and r/:T_E are defined as follows:

(zi E ,4, pi E P)

rl(t_) = y_,, (.'l_kE E, t_ E E).

14

When a token enters place p_, a control signal _;_, defined by 5(p_) is put out and

a marline action is triggered. The token stays in the box until one of the input

signals Y_,,"', Yi_ defined by _(p_) is detected as a response signal of a completed

action.

Process Status Functions To define the action's execution status at a place

and to manage transition open/close statuses, process status functions U:P--*L

(L=0,1,.-., q), V:P_N (N= 0,1) axe defined as follows:

u(p)= {
0 action associated with pl is executing now

in action associated with pl is completed with return code yl,

0

(1

ti is closed

t_ is opened

By introducing these functions, action execution statuses or transition operation

modes can be supervised at a place or transition.

Transition Firing Rule A Transition t, E T can be enabled at marking ml iff:

V(ti) = 1, Ikl(pi) -- 1, U(pi) #0, and MI(pi) -0 for M1pi E [(t_) andpi E O(ti).

By firing t_ tokens are generated in all output places and deleted from all input

places. When the tokens are generated, the output signals defined at the output

places of ti are put out and U(p/) is set at 0.

Based on this model a C-net interpreter was designed and installed on a micro-

computer system. The operator could draw a C-net on a graphic display, and input

control tables. The monitor displays the machine status in real time by displaying

tokens in the active places.

Three experiments were described, an assembly station, a robot controller, and

a general flexible manufacturin_ cell controller. The software development times

15

were reduced by 50 to 80 percent compared with the relay ladder diagraxn method,

_md the system maintenance time was reduced by 60 percent.

2.2.2.2 The Olympus Simulation System

The Olympus Modeling system[17] is an interactive, distributed model inter-

pretation environment for bilogic precedence graphs (BPGs). BPGs, like Petri nets

represent the status of the model through a distribution of tokens on nodes and

edges. An interpreted BPG corresponds to a simulation model of some system.

The Olympus system is an interesting tool because it allows a user to define

and simulate a distributed system with a distributed simulation.

Olympus consists of a frontend and a backend, the frontend implements the

user interface, while the backend provides storage and interpretation of the model.

An Implementation Figure 2.3 illustrates an implementation of Olympus in a

network of Sun workstations, using Unix processes, graphics _md network protocols.

The frontend is a point and select editor built on Sun's NeWS model, implemented

as a NeWS client and a NeWS server. The client implements the logical aspects of

the user interface, while the NeWS server process is responsible for placing images

on the display.

The Olympus server (backend) is implemented as n+l Unix processes. The

first process multiplexes among the four interpretation and storage subproceses, the

other n processes are used to evaluate BPG interpretations. The BPG interpreta-

tions can be defined in any language, provided that the definition can be called as

a C procedure. The task interpreter uses the Sun Remote Procedure Call facility

to invoke the interpretation procedure whenever the corresponding node is fired.

The result of this is that the tool runs a single BPG net, with the firing of each

node starting a. procedure on some (possibly remote) machine. This allows the rapid

prototyping and simulation of distributed systems.

16

Figure 2.3: An Olympus Implementation

CHAPTER 3

PROBLEM STATEMENT

3.1 Project Specification

The object of this project is to build a tool which allows the user to define

distributed hierarchy of communicating colored Petri net transducers. We wanted

to be able to

• Distribute the Petri nets on different machines, with easy ways of changing

the connections between different nets, or the machine on which a net runs.

• Have a graphical display, to allow the user to allow the user to inspect the

progress of the net.

• Attach routines to any or all of the transitions, to allow more detailed simu-

lations.

Because they axe allcommon and versatilesystems, this too[isbeing developed as

a C program to run under the Unix operating system, using the X11 windowing

system for any displays.

3.2 Project Design

3.2.1 Communication

The communication between the processors is an important issue. Since it was

decided to build this program on the CIRSSE Unix system, the Unix methods of

communication were most available.

A socket is a Unix Inter Process Colnmunication (IPC) construct, which al-

lows communication between processes oll multiple machines. Sockets allow many

options including non-blocking reading am[writing, and asynchronous notification

[7

18

of data arrival. Functionally socketslook like files, they can be written to, or read

from with the react(2) or vri_:e(2) commands. Sockets have many communica-

tion semantics, the most convenient one was the SOCK_STREAM which provides

sequenced, reliable, two-way byte streams. Sockets also use several different proto-

cols, the most relevant one is PFINET, which is an internet protocol, which provides

enough versatility to go across ethernets.

Since all UNIX IPC is built upon sockets, sockets are the fastest built-in

communication method possible, and due to the relative ease of writing and reading

data using them, SOCK_STREAM, PFINET sockets were the tool used.

3.2.2 Data Structures

To run a Petri net transducer one must be able to locate all enabled transitions.

This program is also required to run a routine at each transition. Since the Petri

nets axe colored, and this is a Petri net transducer, each transition must have a

set of tokens which enable it, and a set of "menu" commands which allow the

particular transition to fire. From this we decided on a set of data structures for the

implementation of the Petri net transducer: Each transition is a structure, pointing

to

• the function which the transition must run,

• a list of pointers to the pre-places of the transition,

• a list of pointers to the post places.

• a list of "menu" commands which enable the transition

• a list of token "colors" which enable the transition.

19

struc_ transition {

strucZ pre_pointer *pre_places;

s_ruc_ pos__poin_er *post_places;

inZ (*routine) ();

s_ruc_ enabelors *enabled_by;

s_ruc_ enabelors

/*valid token "colors".*/

menu_requirements; / this refers to the*/

/* values required in the "menu"*/

inZ consumes_menu;

inz x_loc;

inz y_Ioc;

};

/*_his increments the menu ptr? */

/*for graphic output */

/*for graphic output */

Each place is a pointer to a list of objects (currently integers) which axe in the

place. Each transition is connected to its pre and post places by a set of pointers

which point to structures which point to the place. These pointers (pre_pointers,

and post_pointers) also point to the routine associated with coloring each token

before feeding it to a transition and decoioring it on the way out, in the case of

post_pointers there is also a pointer to the routine which should be used if the data

is to be sent to a remote machine.

struct place_ptr{

s_rucz place_conZains *place;

inZ x_loc; /*for graphic ouzpu_ */

int y_loc; /*for graphic output */

};

struct place_contains{

inZ object ;

struc_ place_contains *next

};
_contents;

strucZ pre_pointer {

strucZ place_pit *place;

s_rucZ pre_pointer *next.place;

inZ (*decoloration_rouzine)();

};

/*returns true if i% enables */

/*transition, false otherwise*/

2O

s_ruct post_pointer {

int remote; /1 =0 if local otherwise it is a */

struct place_ptr *place; /* pointer to the socket if remote */

/* this points to an integer vith a*/

struct post_pointer *next_place; /* value=the position in the*/

int (*da_a_trans_routine) () ; /*array for the remote value*/

int (*coloration_routine) () ;

>;

Figure 3.1 displays how all of these structures fit together.

3.2.3 Flow of Control

Each sub-net is run by one block of code. The main block sets up one socket

for each of the other blocks, and prints out files giving the _address" of each socket.

It then waits for the other three routines to connect to it. The auxiliary programs

start up, and connect to the given socket. Each of the programs then initializes its

Petri net, and starts trying to fire transitions.

Given the data structure described ia the previous section it is easy to write

code to run the Petri net. Specifically it looks like:

while (TRUE)

{

for (.] =0; j< ntm_ ransitions;j÷+)
if (transition_enabled_p(Zransition[jJ)

fire_Zransition(transi%ion[j]) ;

}

This code checks each transition, and if it is enabled fires it. The algorithm for

determining if a transition is enabled in a colored Petri net transducer is slightly

complicated, the pseudo code for it looks like this:

transit ion_enabled_p (transit ion) {

if (transition->menu_requiremenzs == NULL)

if(transition, enabled_by == NULL)

if (at_least_one_token_ in_each_preplace (transit ion)

retura (TRUE) ;

else return(FALSE) ;

else {

for (_:oken=Zransit ion. enabled_by ;token=token. next ;

21

enabelor

next

enabelor

enabelor

next

enabelor

pre-pointer

next

pre-pointer

L transitiontoken

f
Lt pe

com_

decoloration

V routine

function

x

_y

:- consumes_menu

post-pointer

place-ptr _ x nextpost-pointer

Y

next

place-contains

. remote

___ data..tr_us_
routine

--_ coloration

routine

Figure 3.1: The Data Structures of the TokenPasser Program

22

token--_)

if (at_least_one_t oken_per_place_matches (token))

return (token) ;

return(FALSE) ; }

else

if (at_least_onematches (trans->menu_requirement,

current_menu ())

if(transition.enabled_by s. NULL)

if (at_least_one_token_in_each_preplace (transit ion)

return (TRUE) ;

else return(FALSE) ;

else {

for (token=trans it ion. enabled_by ;token=t oken. next ;

token==_JLL)

if (one_t oken_per_place_mat ches (token))

return (token) ;

return(FALSE) ; }

return(FALSE) ;

Once it is determined that a transition is enabled, firing a transition consists of."

removing one (appropriately colored) token from each pre-place, running the routine

associated with the transition, re-coloring the token, and putting it in each post-

place, and incrementing the "menu" pointer if the transition required a _menu"

command to fire.

Note, one flaw with the present system is that it is impossible to specify that

a certain transition requires multiple tokens from one place.

3.2.4 User Interface

The input data for the Petri net is entered in the form of a file which is

compiled with each program. This program has an X-window graphical display as

output. This display shows the Petri net, and the tape for the net, along w}th the

current marking of the net. This allows the transmission of data and commands to

be seen, in addition to the overall command structure for the the defined nets.

Each net is run by it's owu block o[code. If the user chooses to observe the

23

firingsof the net the block of code forks to two processes, the firstof which runs the

net as described in the previous section.The second block monitors and updates the

display,which allows the display to be moved, resized,or hidden without interfering

with the progress of the firingof the net. Of course, under normal conditions,the

transitions_re to quickly to allow the user to observe the net, so when the display is

_on _ there isa 300 mS delay builtinto each transition,so the user can see itflash.

Ifthe user doesn't display the net, the 300mS delay isnot enabled.

CHAPTER 4

CASE STUDY

4.1 CIRSSE System Overview

4.1.1 Goals

One of the present goals of the CIRSSE platform project is to be able to

assemble struts and nodes autonomously onto some well-defined structures in a

space environment. For this task it has been assumed that there are only three

classes of objects in the workspace of the platform: struts, nodes, and obstacles.

The obstacles may travel in the workspace in some unpredictable ways, and the

platform system has to avoid the possible collision with them during the process of

construction.

A completely autonomous Organization Level for the pla_.form system is not

considered at the current stage. Therefore. its function is replaced by a human op-

erator in the earth station. In order to make the Coordination Level understamd the

tasks from the Organization Level (which may be a human operator), a formalism,

called system command lanjuage, for e.'cpressing the construction missions by the op-

erators is designed, and the input to the Coordination Level will be compiled system

commands (or task plans). Obviously, to reduce the communication required be-

tween the earth s_ation and the space station, the compiler for the system command

language should be hosted on the space station with the Coordination Level.

Due the constraint imposed by earth-space communication, the Coordination

Level has to be able to operate under the situation that task commands from the

high level arrive infrequently and erratically. To accomplish this, the dispatct(er (D)

of the Coordination Level should

1. Decompose the task commands into subtasks and dispatch them in order when

24

25

the relevant coordinators have signaled that they axe ready for the next exe-

cution.

2. Communicate with the coordinators relativelyquickly;

3. Be capable of settingup communication between any two coordinators which

need information exchange.

The three coordinators of this Level axe: t.he vision coordinator (VC), the gripper

coordinator (GC) and the motion coordinator (MC). The system components of the

dispatcher and the coordinators are described in sequel.

4.1.2 System Components

4.1.2.1 Dispatcher

As noted in the goals, the communication time to the dispatcher may be er-

ratic, however, we require the dispatcher r.o communicate quickly with any of the

coordinators. Because of this _dl of the coordinators axe designed to _ilow (rela-

tively) long waits between commands. Additionally, the dispatcher is not involved

in transmission of large blocks of data. [f large amounts of data is e.'cpected to

be passed from one coordinator to another, then the dispatcher just instructs the

coordinators to connect to each other, an allows them to communicate at whatever

rate they are capable of.

The dispatcher is physically realized on Sol, a SUN4/260 workstation. The

dispatcher communicates with the coordiltators through THINNET, a version of

ETHERNET. The communication will be implemented with IPC SOCK_STREAN[

type sockets, under the IF_[NET protocol. This Implementation results in a mini-

mum turn around time of 200mS from one processor to another and back.

26

4.1.2.2 Vision

The vision coordinator has the job of "looking" at an area that it is told to

observe, and attempting to find something which it has been told to find there. It

then gives the location of said object back to the system which asked for it, and

waits for another command. The location of an object includes it's position, and

orientation, and in the case of obstacles, a simple description of it's surface.

The vision system is physically realized on a VxWorks cage with a Data cube,

and a Motorola MVME147 controller. The controller is connected to the ethernet,

and thus to the rest of the system. The Datacube boards consist of:

SNAP The SNAP board performs non-linear transformations (comparisons and

max/min determinations) in sequential digital video data.

VFIR-MKIII A video impulse response filter module. It implements a 256 ar-

bitrary coefficient convolution. This is primarily used in edge detection, and

noise filtering.

Max-SP This is capable of performing real time frame rate single point tempo-

ral and spatial filters, image merging, image subtraction and addition, and

Min/Max processing.

FEATUREMAX-MKII this does advanced feature-list extraction, and histogram

grams. A summation of all row or column pixels can be done in a table.

MAX-MUX This provides the MaxVideo user with software control over MAXbus

data source and destination selection. This allows for easier reprogramming

of the Datacube.

DIGIMAX This is a video acquisition and display module which is capable of

accepting one of eight inputs. This is used to feed the information from the

cameras to the RO[-STOllE units.

27

ROI-STORE this is a frame storage module which supports user programmable

video resolution and processing of regions of interest within a video image.

Since there are two DIGIMAX cards two frames can be read simultaneously.

Two of the cameras are mounted on the manipulators, allowing greater diversity in

the objects which can be viewed, but presenting greater challenges in calibration.

Two of the remaining cameras are mounted on the ceiling of the workspace, and the

remaining one has not yet been placed.

The each frame grabber is capable of reading the cameras at a rate of 30 Hz.

The output of the Datacube is sent to the MVME147 which can further analyze the

image and send data to other coordinators. The MVME147 does any intermediate

level operations, such as Hough transforms, or line fitting.

The- Uniphase laser is controlled by the Motorola MVME 135 CPU, and the

MVME :-40 parallel board. The laser is used to put bright points on the object, to

make st_ -eo point matching easier.

4.1.2.3

T

camera

used b

toro[a

Arm

: motion system is used to move objects in the environment, and to move

,vhich are attached to the robot arms. The motion system is also directly

he vision coordinator during calibration.

,-* motion system is physically realized on a VxWorks cage running 5 Mo-

{V.'V[E 135 boards (68020 CPUs). along with

MV.%i _340A A parallel port board, which also supplies timer interrupts. This is

,:_-ed to read the sensors, and supply interrupts for the platform servo control

V2vII'v','vIE 2532A A digital I/O board, which is used primarily for switching ex-

ternal circuits, thus allowing software control of power to any of the manipu-

lators.

28

DVA4E 628 A D/A converter, for supplying motor currents to the arms. The

digital signal is converted to analog, and then run through a servo amplifier

and fed to the joints in the system.

MVME 224-1 Four MBytes of shared memory.

XVME 556 A 16 channel A/D converter, which is currently unused, but may be

used for reading encoders.

Whetdco Eneoder A VME 3570 Optical shaft encoder, used for reading the po-

sition of the carts on the Aronson platform.

VME 7016 A VME Q Bus controller, used to control the Puma.

832 XT Eight channel serial interface. This will be used to control the gripper.

The 68020s connect via the databus to a D/A board which feeds currents to a Puma

560,and a puma 600 arm. The puma arms have absolute position potentiometers,

and torque sensors at all of their joints. Each arm is mounted on an Aronson plat-

form which gives each arm three more degrees of freedom. The arms and platform

are controlled by Kali, [221 an integrated path planner/arm controller.

4.1.2.4 Gripper

The gripper will be used to actually grasp struts and nodes. It must be able

to sense when there is an object between its "fingers", report the position that the

fingers are in, and the force they are applying. The gripper is a pneumatically

controlled gripper. Each gripper is equipped with an crossfire sensors, and force

sensors, and is mounted on a Lord force/torque sensor, which is mounted on the

end of the puma arm. The gripper controller is a Motorola 68HCll based controller,

which communicates with the VxWorks cage through the 332 XT serial interface in

the VxWorks cage.

29

4.2 System Command Language and Task Grammar

As mentioned in the previous section, a system command language is necessary

for the Coordination Level to interact with the human operators in the Organization

Level. This high level language will also make the programming of the construction

missions much easier for operators.

A general formalism for the system command language can be defined by

following the syntaxes of the existing high level languages, such as Pascal and VAL-

II. One of such examples is the command formalism developed by Noreils and Chatila

(1989) for a mobile robot system. However, since this paper is concentrated on the

Coordination Level of the platform system and the inputs to that Level are only the

compiled system commands (that is, sequences of tasks which are directly related

to the operation of the Level), no attempt to specify a formal language for system

commands will be made here. Instead, we define the following task grammar G to

represent the compiled system commands to the Coordination Level:

G=(S,N,:o,P)

where

N

P

- {calR, call/, move, slave, approach, release, grasp,

findS/N, f i ndO B S con t in ue_vi _i on }

= {S,V.M.M,,M_,,H,,H,_,H,_.H,,,H_,I,H_n}

= {S-.calRM

M _ caIV V[move :1/[_

ik[_ ---, move _.1_[_]approach M, l approach H,

H, -* release H_l

H,l -* grasp H,2 [move H,I [approach H,l [calV V

H,2 "* release H_ l release M,

30

V --. findS/N v lyindOBS V[move My I

Vt --* continue_vision V

Mv -- move M_]approach M_ l approach H_ I

H_ -"+ release H_t

H_t --* grasp H_2 I move Hv, [approach H_l I

H,2 --* release H_ l release ilg,

V, M. M,, M,, H,, H,,, G, H,, H_t --+ S}

approach M_ I slave Vt

V

v,

Eo represents the set of task primitives (terminal symbols), N is the set of

non-terminal symbols with S as the start symbol, and P the set of production rules

for deriving task plans (or language).

The task grammar G characterizes the basic task precedences in the operation

of the platform system. With this given grammar, the problem of establishing the

Coordination Level becomes that of constructing a coordination structure which is

capable of processing all the task plans generated by G. This will be accomplished in

th following section by giving the individual Petri net transducers for the dispatcher

and coordinators.

4.3 Coordination Structures

4.3.1 The Petri Net Transducer for the Dispatcher

The simplified Petri net model for the dispatcher, shown in figure 4.1 consists

of 12 places and 16 transitions. A transition generally represents dispatching a

command to perform a specific task. while a place represents the state of the system.

These places and transitions are specified as follows:

Transitions:

CalR: Calibrate the Robot arm.

31

|

\

Figure 4.1: The Simplified Dispatcher Architecture

32

M1, M2, M3, M4, MS, M6: Send a Move or Approach command to the

Motion Coordinator.

Rell, Rel2: Send a release command to the Gripper Coordinator.

Grip: Send a grip command to the Gripper Coordinator.

V1, V2, V3: Send a find obstacle, find strut, or find node command to the

Vision Coordinator.

CalV1, CalV2: Send a Calibrate command to the Vision Coordinator.

Con_V: Continue the interrupted vision task.

Places:

C: Holds a token if the vision system has been calibrated.

UC: Holds a token if the vision system is not calibrated, and at least one

move command has been done.

S, M, Ms, H1, H2, V Vt: These places correspond to the non-terminals in

the grammar.

Vision, Gripper, Motion: These three places each represent four input and

output places and semaphores for each of the three subnets.

The full Petri net model for the dispatcher, 4.2 consists of 37 places and 32

transitions. For simplicity, the simplified model will be discussed, as understanding

all of the places and transitions is not necessary for understanding the net.

The input alphabet for the dispatcher is the set of primitive tasks from the

organization level. The output alphabet . i.e., the set of primitive control actions in

the Coordination level is _ = /.-Xo = _, I.J--.,_ !..J !_, where _ r, and _,,_ axe the

input alphabets for the vision coordinator, the motion coordinator, and the gripper

coordinator. We have :

33

Figure 4.2: The Dispatcher Architecture

34

_a = Eo = {Calibrate., Look., Find., Slave, Continue_trision, Calibrate,_,

Move,,,, Apgroach,_, Graspg, Releaae_ }

The translations for all of the ads for the dispatcher is as follows:

The translation mapping for cra(Con_V, continue_vision) can be specified as:

send_tape(vision_socket, Insert_tape_immediate, Continue);

The translation mapping for _a(V., Look) can be specified as:

send_tape(vision_socket, Append_to_end, Laok, Return);

The translation mapping for crd(V., Find.) can be specified as:

send_tape(vision_socket, Append_to_end, Find, Return);

The translation mappings for _,a(Rell, Releaseg) and _rd(Rel2, Releaseg) can be

specified as:

send_tape(gripper_socket, Append_to_end, GoPosiZion, Return);

The translation mapping for a_(Grip, G,'a_p_) can be specified as:

send_tape(gripper_socket, Append_to_end, GoPosition, Return);

The translation mappings for _(CalV£. Calibrate.) and cr_(CaIV2, Calibrate.)

can be specified as:

send_tape(vision_socket, Append_to_end, Ca_IV, CalV, CalV, CalV,

CalV, Ca.IV, CalV, Return);

The translation mapping for cr,_(CalR.Crdibrate._) can be specified as:

send_tape(arm_socket, Append__o_end, CalR);

/* we are considering removing this command from the -/

/* grammar, as it only needs Zo be implemented every */

/* 6 months, not every time the system is brought up */

35

The translation mapping for a_(M,,, Approach,,,) can be specified as:

send_1:ape(arm_socke1:, Append__o.end, Approach) ;

The translation mappings for (r_(M_, Move) and ed(M_, Slave) can be specified

as:

send__ape(arm_sockeZ, Append_to_end, Move);

All other transitions of the dispatcher are internal operations.

4.3.2 Petri Net Transducer for the Vision Coordinator

The Petri net model of the vision coordinator in figure 4.3 consists of 15 places

and 16 transitions. The transitions generally represent lower level routines, while

the places represent the state of the system. The places and transitions are specified

as follows:

Transitions:

Look: is fired to direct the vision system to "look" at a given location.

NMv: No Move is fired if no arm movement is required to "took" at a given

location.

Mv: Move is fired if arm movement is required to _look" at a location.

BMv: Begin Move is fired to send the move command to the motion coordi-

nator.

Cal: Calibrate is fired when the calibrate command is given.

Find: is fired to give the command to find a strut, node or obstacle in the

scene that the vision system is already looking at.

36

Figure 4.3: The Vision Petri Net Transducer

37

EMv: End Move isfiredwhen the Motion system returns a non-error value

and the menu command iscalibrate.

BL:Blocks untilthe Datacube isfree.

FG: the Frame Grabber gets the picture from the cameras, and sends the

data to the Datacube.

BAn: Begins Analysis of the picture inthe case when another move command

must be sent to the arms.

EAn: Analysis is complete, and the Datacube isreturned to the available

state.

BA2: Analysis Begins for the case when the task isabout to be completed.

EA2: Analysis Ends, and the state of the net is reset to ready, while the

resultsare sent to Out.

Cont: Fired when a "continue action" command isgiven. Informs the Vision

net that the event itwas waiting on (an arm motion) iscompleted.

NW: Fired when the net receivesa "continue" command when itisn'twaiting.

Places:

In: The input place.

Out: The output place

Ready: Marks the availability of the system.

IS, OS: The input and output semaphores.

Datacube: Marks the availability of the Datacube.

Anl. An2: Analyzing: the Datacube is processing information.

AFin: The arm is finished with it's action, or a continue command was sent.

Mov: The arm is moving.

38

PMove: Prepare to Move the a_m

WFD: Wait For Datacube.

HF: Have Frame.

DW: Decide Where cameras need to be to "look" at the given location.

WFFG" Wait For Frame Grab.

The subtasks to be processed by the vision coordinator are: G_ = {look, Find,

calibrate_vision, return, continue}. The output alphabet A,, consists of hardware

related operations for the camera devices, and commands to the Motion coordinator.

The translation mapping ¢. for the vision coordinator is expressed as follows:

The translation mapping _(Look, look) can be specified as:

look_at (x, y, y, cameras_ allowed)

float x,y,z; /*The location we wzu_t to look at*/

boolea_ cameras_allowed[3 ; /*specifies cameras we may use=/

<

in_ i;

for(in0; i< NUM_CAMEKAS; i++)

cameras_allowed[i] &= caa_be_poinZed_at(x,y,z, i);

if (number_of_allowed(cameras_allowed) < 2) return (EB/_0R);

else enable_two_best_cameras (cameras_allowed) ;

re1:ur_ (enabled camera_descriptor) ;

}

The translation mapping _,(._[v, look) can be specified as:

calcul at e_desired_arm_pos it ion (x, y, y, cameras_enabled)

float x,y,z; The location we want to look at*/

boolean cameras_enabled[] ; /*specifies cameras we may use*/

<

if (=umber_of_cameras_mobile(cameras_enabled) != I)

return (EKKOK) ;

else load (where_the_camera_should_be (x,y,z) ,

DES IKED_AKM_POSITION_TABLE) ;

ret:urn (OK) ;

}

39

The translation mapping _.(Cal, calibrate_vision) can be specified as:

load_des ired_arm_pos it ions_f or_calibra_ ion () ;

analyze _ &analyze_calibration_card_routine;

The translation mapping o'.(Find, Find) can be specified as:

setup_ analyze_rout ine (¢ ape_ cmnd,

boolean high_precision;

int tape_cmnd;

{

if (high_precision) {

switch (tape_cmnd)

case stru¢ :

case node :

case obstacle :

>
>

else

swi¢ ch (tape_cnLud)

case stru¢ :

case node :

high_precision)

of

analyze_rou¢ine = &find_stru¢_rou¢ine_hp;

analyze_routine = _find_node_rou¢ine_hp;

analyze_routine-_find_obstacle_routine_hp;

of

analyze_rou¢ine = &find_strut_routine;

analyze.rou¢ine = _find_node_rou¢ine;

case obscacle: analyze_rou¢ine = Efind_obsta¢le_rou¢ine;

>

The translation mappings <r.(BMv, calibrate_vision) and _.(BMv, look) can be

specified as:

read_des ired_arm_posiZ ion () ;

send__ape(dispaZcher_sockeZ, InserC_tape_immediaZe, Slave, ConZinue) ;

The translation mappings cr_,(FG, calibrate_vision) and _.(FG, Find) can be

specified as:

grab_frames (cameras_enabled) ;

All other transitions are internal operations.

m

Figure 4.4: The Gripper Petri Net Transducer

4O

4.3.3 Petri Net Transducer for the Gripper Coordinator

The Petri net model of the gripper coordinator in figure 4.4 consists of 7 places

and 7 transitions. The transitions generaLl.v represent lower level routines, while the

places represent the state of the system. The places and transitions are specified as

follows:

Transitions:

Start: Checks that the gripper }s t'eady to run the next command.

Cross: Checks the crossfire sensor, i'eturning true or false.

41

GoP: Go Place doses the gripper to a desired width.

MeP: Measure Place measures the size of the gripper opening.

GoF: Go Force closes the gripper until the desired force is reached.

MeF: Measure Force returns the force that the gripper is applying

Next: Sends the token back if there is another command in the menu.

Finish: Returns the token to wait for another command.

Places:

In: Input place.

Out: The Output place.

IS, OS: The input and output semaphores.

Ready: Gripper Ready for the next command.

BC: Before Command.

AC: After Command.

The subtasks to be processed by the gripper coordinator are v

GoToPosition, GoToForce, MeaaurePo_i_ion, MeaaureForce}.

phabet consists of hardware related operations for the gripper.

The translation mappings for o'g the are:

The translation mappings crg(Cros3, cro.._sfire) can be specified as:

crossfire () "[

if (da_a_from_cross_ire_sensors == BLOCKED) return (TRUE);

else return(FALSE) ;

The translation mappings _g(GoP, GoToPosition) can be specified as:

= {cross fire,

The output al-

42

goto_position(desired_posi_ion){

write_val - calculate_controller_value(desired_position);

write_to_controller(wri_e_val);

if(whatever_the_error_conditions_are) return(EPhOR);

else return (OK);

}

The translationmappings _g(GoF, GoToForce) can be specifiedas:

goto_force(desired_force){

write_val = calculate_controller_value(desired_force);

write_to_controller(write_val);

if(wha_ever__he_error_condi_ions_are) return(ERROR);

else return (OK);

}

The translation mappings o,g(MeP, Mea_urePosition) can be specified as:

measure_position() ;

The translation mappings a9(MeF, Mea_ureForce) can be specified as:

measure_force();

All other transitions are internal operations.

4.3.4 The Petri Net transducer for the Arm Coordinator

The Petri net mode[of the motion coordinator in figure 4.5 consists of 13

places and 9 transitions. The transitioos generally represent lower level routines,

while the places represent the sta_e of _he system. The places and transitions are

specified as follows:

Transitions:

Start:Checks that the User Program is ready to submit the next command.

43

Figure 4.5: The Arm Petri Net Transducer

44

Goto: Transition for the goto(X, Y, Z) command.

Ill:Illegallocation for the arm to go to.

Calc: Calculates the transform for the Cartesian command.

Fin: The Arm has eitherreached the desired position or an error state.

Que: The motion command is about to be put into the motion Queue.

My: Start moving the arm.

CSP: Calculate the next Set Point.

tS: Motion Not yet Completed.

Sta: Fired ifin error state,or ifthe motion has been completed.

Fin: Finished. Returns either"OK" or "Error".

Places:

In: Input Place.

Out: Output Place.

IS, OS: The input and output semaphores.

Ready: Motion system ready for the next command.

PID: This represents the PID loop.

Wa_ting: The user program is waiting until the lower levelsof Kali output

either the desired position,or azlerror.

Output: The Lower levelsof Kali have either reached an error, or some

position.

LLR: A lower Level Ready, A token here indicated that the Queue isready

to begin the next job in the mot.ion queue.

PI: Test for legalityof path.

45

P2: Ready to enqueue an item.

TQ: Task Queued.

NSP: Gets the Next Set Point.

The subtazks to be processed by the motion coordinator are E_ = .[Approach,

Move}. The translation mappings for the motion coordinator can be defined as

follows:

The translation mappings cr._(Que, Approach) can be specified as:

set_Kali_mode (CARTESIAN) ;

load_t o_queue (desired_pos ition) ;

The translationmappings crm(Que , _/[ave)can be specifiedas:

set_Kali_mode (JOINT) ;

load_to_queue(desired_position) ;

The translation mappings a',,(CSP, Approach) and a',_(CSP, Move) can be spec-

ified as:

calculate_set_point(current_position, desired_position);

All other transitions in the motion coordinator are internal.

4.4 Analysis

4.4.1 Structural Analysis

The Dispatcher and all of the Coordinators are live, thus, the PNT underlying

the whole coordination structure is live. Likewise, the net is structurally bounded.

46

4.4.2 Simulation

Simulations axe run to test the communication speed, when the message size

and distances between the machines are varied. The default setup is:

Dispatcher Sol, a Sun 4/260, and the system file server, and network host.

Motion Mars, a Sun 3/260.

Vision Venus, a Sun 4/60 SparcStation.

Gripper Earth a Sun 3/150.

Timing of the speed was done by attaching a routine to every transition in

the dispatcher, and recording the amount of time passed since that routine was last

called. All of the times which measured the delay between sending a message and

receiving one back were recorded.

These tests were run with the initial tape:

CaIR, CaIV, Move, Rel, Grip, Move, Approach, Rel, Look, Find, Move, Find,

Move, Move, Approach.

This results in 52 transitions being fired, resulting in 26 message transmission delays.

4.4.2.1 Message Size Variation

This section tested the the variation in speed when the message size was in-

creased. Under normal operations, sending a token involves the transmission of 8

bytes, and a tape section is 12 to 40 bytes. In this test 50 and 500 bytes were

appended to each socket message to see if this deteriorated the speed of the message

transmission.

The results of this variation can be seen in figure 4.6. As can be seen adding

50 bytes didn't affect the performance, while adding 500 bytes doubled the expected

delay time.

47

w_mm_

m m _ I J m

_w

n

I
_t

!_L.__ & _
i:ii_ I _lI I

Iidiwm_iliil

_i_h n
I.

II,

I"
Ik

n

,.. _ UI_I ;11 n, ,

_m_m

m I m m _ m

hai_

I JL

4

m m _m N m m

_m

t

I,

I.

u,

i , ,11
m m m J J nl

nmwtm_lo

• mmlmJ_m

f-

-_ m I im J m m

_w

l,! I

Figure 4.6: Variations in Transmission time with Distance and Data Size

48

w

Figure 4.7": Delay increases when sockets are used to communicate on

a single machine.

The message sizes were also varied with the computer configuration variation

as described in the next section.

4.4.2.2 Computer Configuration Variation

This section tested for variations in speed due to variations in the distances

between the computers which were running the nets , and variations in how the

computers were connected.

All nets local [n this test all of the nets were running on Sol, communicating, as

normal, via sockets. The results of this caxl be seen in figure 4.7.

The explanation for the counter-intuitive increase in delay time can be seen

when one realizes that a computer onlv checks sockets every 200mS, and since a

computer will be synchronized with itself. (and is unlikely to be synchronized with

another computer), a round trip socket communication on one computer takes twice

as many clock cycles as communication between different computers.

J

49

]

t

_0

4|.

40.

'35,

20,

hl.

I0-

5.

0
0

JdINm,Im _

tom I_00 2000 _ _ _00 lOOO I_I00 7_0 2_0

Figure 4.8: There is no particular benefit to placing the Dispatcher on
the file server.

On peers In this we moved the dispatcher to Moon (a Sun 4/60GX SparcStation)

to see if the dispatcher being the net server improved or worsened the situation.

As can be seen from figure 4.8 there is no significant difference in communi-

cation times, thus relieving any necessity of placing the dispatcher on the (possibly

overloaded) file server.

Non-local net The dispatcher was placed on pawl3.pawl.rpi.edu, a Sun3/50, lo-

cated across campus. After testing this. the message size was increased by 50, then

500 bytes.

As can be seen from 4.6 the increased distance produced almost no changes

in the normal and +50 byte tests, however when the amount of data transmitted

gets larger, the increased distance produces a more pronounced effect. In fact,

when the program was run with the display turned on (necessitating increased data

transmission to allow the graphics) the program halted with lost data on 3 of the 4

attempts. In further testing it was observed that more displays resulted in less time

to failure.

50

Long distance The dispatcher was located on truebalt.caltech.edu, a Sun4 on

based on a Sparc architecture, in Pasadena California. The coordinators were lo-

cated on their normal computers, resulting in about 3000 miles of Internet commu-

nication between the Petri nets.

From figure 4.6 it can be seen that this increased distance resulted in degraded

speed even with minimal data. The nets still ran (although more slowly) with 50

extra bytes of data, even when displaySng full graphics, however the increase to 500

extra bytes of data per socket transmission resulted in the net failing to complete

the task every time (in 6 consecutive trys). The e_ra load was lowered to 200 bytes

which restdted in success in 5 out of the 6 attempts.

CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

5.1 Summary and Conclusions

This thesis stated the need for a software tool to assist in the development

of distributed hierarchical systems. After a brief overview of Petri nets, available

Petri net development tools, and available distributed program design tools it was

seen that there were no tools which assisted with the distributed design task which

allowed use of all the analysis rooks developed for Petri nets. Petri net transducers

were introduced as a model which allowed a full analysis of the nets, and allow

control of the transitions fired via a relatively simple mechanism. Because of this

they were used as the basis of the TokenPasser program.

With the criteria given, and the additional criteria requiring a friendly output,

and the ability to attach routines to each transition (to allow the TokenPasser to

develop code which could control more than a mere net), the Token passer program

was developed.

The coordination structure for an Intelligent Machine was identified as a

project within the domain of the TokenPasser program, and after developing a Petri

net model for the Dispatcher and Coordinators of a simple system, TokenPasser was

used to develop code to simulate the nets _n various machines. The code was then

used to test several possible configurations, with respect to how those configurations

affected the speed of communication.

This testing allowed several facts to l_e discovered.

t. Until very large tokens are being passed, the size of the tokens doesn't affect

the communication time.

2. The longer the physical distance between the computers the smaller "very

52

laxge" is.

3. A computer communicates (via sockets) more slowly with itself than with

other computers.

4. Being the file server, and network gateway don't appear to influence commu-

nication time.

This thesis also, by developing a PNT for the Coordination Level, and develop-

ing code to execute those nets, went one step further in justifying the Coordination

theory for the Coordination level presented by Wang [25]. Taken together with the

mathematical formulation for the Organization level, and well developed control

theory for the Execution level, this further justifies a mathematical theory for I.n-

teUigent Machines. Such a mathematical theory will provide a solid foundation for

the design, simulation, verification, and implementation of Intelligent Machines.

5.2 Future Research and Modifications

Some useful modifications, and additions to this code are:

• Write program to translate Grea_SPN .net files to TokenPasser input flies.

This will allow easier creation and modification of nets.

• Modify to read .net files, instead of compiling net into code.

• Write communication using Datagram protocol instead of SOCK_STREAM

protocol. This should eliminate 200)_)S delay, at a cost of TokenPasser having

to do it's own data checking.

• Modify the code to allow arcs which have a weight > 1.

• Give the user a menu of valid commands to append to the tape or insert in the

tape at any time, this can be done as on-screen buttons to allow telerobotic

operations.

53

• Add in intermediate level "fast" command which allows a knowledgeable user

to watch the progress of the net without the full overhead of a graphical

display. (eg. the -semif_t option results in no display except for printing out

the number of each transition as it fires).

• Rewrite the main routine to allow the user to define the communication among

the nets in a more complex manner. SpecificaLly, the current program only

allows a two layers of communicating nets, (either a net connects to a pre-

existing socket, or it opens a new socket, it can't do both). If the main routine

is rewritten to allow both opening and connecting to pre-existing sockets, this

will allow the user _o define a much more complicated net structure.

• Rewrite to allow for partial display of graphics. Currently a fairly simple

net fills the whole screen, it should be possible to mark certain transitions as

"uninteresting", allowing the display of a more interesting net by ignoring the

trivial places or transitions.

LITERATURE CITED

[1]

[2]

[al

[41

(51

[61

[71

[81

[91

[io]

[11]

[12]

AI-Jazr, R.Y. and Derochers, A.A. (1987), Petri Nets in Automation and

Manufacturing, Robotics and Automation Laboratory Report, No. 99,

Renssetaer Polytechnic Institute, Troy NY.

Azema, P. et al. (1984) Specification and Verification of Distributed Systems

using Prolog Interpreted Petri Nets, Proc. 7th Int. Conf. Software Eng.,

Orlando USA, 1984, pp. 510-518.

Berthelot, G. and Terrat, R. (1982) Petri Net theory for the Correctness of

Protocols. [EEE Trans. Commun.. Vo[. COM-30, No.12, pp. 2497-2505.

Boehm, B.W. (1976) Software Engineering, [EEE Transactions On

Computers, Vol c-25, No. 12, pp 1226-1241.

Boehm, B.W., and Papaccio, P.N. (1988), [EEE Transactions on Software

Engineering, Vol. 14, No. 10, pp. 1462-1476.

Bruno, G. and Marchetto. G. (1986) Process-Translatable Petri Nets for the

Rapid Prototyping of Process Control Systems, [EEE Trans. Software Eng.,

Vol. SE-12, No. 2, pp. 346-357.

Chiola, G. (1985) A Software Package for the Analysis of Generalized

Stochastic Petri Nets, Proceedings of the 1985 Workshop on Timed Petri

Nets. Torino. Italy, pp. 136-143.

Courvoisier, M. Vallette. R. Bigou..I.M. and Esteban, P. (1983) A

Programmable Logic Controller based on a high level Specification Tool, Proc.

1983 Conf. Ind. Electron.. pp. 174-179.

Crockett, D.. Desrochers, A., DiCesare. and Ward, T. Implementation of a

Petri Net Controller ['or a Machining Workstation.(1987), Proc. i987 [EEE

Int. Conf Robotics Automat., pp.186t-[867.

Dugan, J.B.. Bobbio, A., Ciardo. G.. and Trivedi, K. (1985), The Design of a

Unified Package for the Solution of Stochastic Petri Net Models, Proceedings

of the i985 Workshop on Timed Pert7 .Vets. Torino, Italy, pp. 6-13.

Feldbrugge. F., Petri Net Toolkk Overview 1.989, (1989), Lecture Notes in

Computer Science, pp. 15t-178.

Garg, K. An Approach to Performance Specification of Communication

Protocols Using Timed Petri Nets. (1_._85), [EEE Trans. Software Eng., VoL

SE-11, No. 10. pp.1216-1225.

54

55

[13]

[14]

[15]

[16]

[17]

[lS]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Johnson, A.M., Malek, M. (1988) Survey of Software Tools for Evaluating

ReLiability, Availability, and Serviceability ACM Computing Surveys, Vol. 20,

No. 4, pp. 227-269.

Krogh, B.H., Wilson, R., and Pathak. D. (1988), Automated Generation amd

Evaluation of Control Programs for Discrete Manufacturing Processes, Proc

[EEE International CIt_ Conference Troy, NY, USA, pp. 92-99.

MoUoy, M. A CAD Tool for Stochastic Petri Nets, (1986), Proc. i986 Fall

Joint Computer Conf., pp. 1082-1091.

Murata, T., Komoda, N., Masumoto, K., and Haruna, K. (1986), A Petri

Net-Based Controller for Flexible and Maintainable Sequence Control and its

Applications in Factory Automation.. [EEE Transactions on Industrial

Electronics, Vo| IE-33, pp 1-8.

Nutt, G.J. et al. (1989) OLYMPUS: .An interactive Simulation System 1989

Winter Simulation Conference Proceedings, Washington DC, USA. pp.

601-611.

Peterson, J.L. (1980) A Note on Colored Petri Nets, Information Processing

Letters, Vol 11, No. l, pp 40-43.

Peterson, J.L, (1981) Petri ,,Vet Theory and the Modeling of Systems,

Prentice-Hall International, Englewood Cliffs, NJ.

Saridis, G,N. and Stephanou, H.E. (1977) A Hierarchical Approach to the

Control of A Prosthetic Arm. [EEE Trans. on Systems, Man, and

Cybernetics. VoLSMC-7, No. 6. pp. 407-420.

Saridis. G.N.. Foundations of Intelligent Controls, Proc [EEE Workshop on

Intelligent Contr., pp 23-27, RPI. Troy N.Y.

Topper, A., Caneshmend, L., and Hayward, V. (1988), A Computing

architecture for a Multiple Robot Controller for Space Applications - Kali

Project. Fifth CAS[Conference on A.,tronautics, Ottowa, 1988.

Wang, F.-Y.. K_iakopoulos K.J.. Tsolkas A., and Saridis, G.N. (1990) A

Petri Net Coordination Model for an Intelligent Mobile Robot. CIRSSE

Report 50. RP[, Troy, NY.

Wang, F-Y. and Saridis. G.N. (1990) A Coordination Theory for Intelligent

Machines. [F.4 C Journal A utomatica. Vol.26, No.9.

Wang, F.-Y. (1990) A Coordination Theory for Intelligent Machines, Ph.D.

Thesis, ECSE Dept, RPI, Troy, NY.

APPENDIX A

THE TokenPasser CODE

A.1 Compiling Instructions

This is the makefile for the simulation described in this thesis.

#g

##

##

##

##

##

##

##

NOTICE OF COPYRIGHT

Copyright (C) Kensselaer Polytechnic Institute.

1990 ALL RIGHTS KESEKVED.

Permission to use, distribute, and copy is granted ONLY

for research purposes, provided that this notice is

@# displayed and the author is acknowledged.

##

This software is provided in the hope that it will be

useful. BUT, in no event will the authors or Kensselaer

be liable for any damages whatsoever, including any lost

profits, lost monies, business interruption, or other

special, incidental or consequential damages arising out

of the use or inability to use (i_cluding but not

limited to loss of data or data being rendered

inaccurate or losses sustained by third par_ies or a

failure of this software to operate) even if the user

has been advised of the possibility of such damages, or

for any claim by any other party.

##

_# This software was developed at the faci!ities of the

Center for Intelligent Robotic Systems for Space

Exploration, Troy, New York, thanks to generous project

funding by NASA.

##

Package: TokenPasser

##

File: Makefile

3_

57

_# Written By: Michael Mittmann
##
Date: 1/30191
##
#_ Purpose: The purpose of the package can be found in the file

main. c.

This file contains the instructions to make 4 routines,

which model (by using a PNT) a coordinator controlling

#_ an arm, vision system, and gripper.

##

Modification History:

##

disp: draw.o main.o makePet.o petLib.o petri.o postn.o

setup_disp.o \

transform.o sock_open.o menu.o window_manager.o read_socket.o

cc -o disp draw.o main.o makePe_.o petLib.o petri.o postn.o \

s Zup_iisp.o transform.o menu.o window_manager.o \

scck_coen.o read_socket.o -Im -IX11

aum : !r_w.o main.o makePet.o petLib.o petri.o postn.o setup_arm.o

\

tr'-zsform.o sock_connect.o menu.o window_manager.o

reac_socket.o

ca -o arm draw.o main.o makePet.o petLib.o petri.o postn.o \

zetup__-m.o =ransform.o menu.o window_manager.ok

zock_c_nnecz.o read_socke_.o -!m -IX11

vision: draw.o main.o makePet.o petLib.o petri.o postn.o

setup_vision.o \

tr_nsform.o sock_connect.o menu.o window_manager.o

r_ad_sockeZ.o

cz -o vision draw.o main.o makePet.o petLib.o petri.o postn.o
\

setup_vision.o transform.o menu.o window_manager.ok

sock aonnect.o read_socket.o -Im -IX11

grip: draw.o main.o makePet.o pe_Lib.o petri.o postn.o

setup_grip.o \

_ransform.o sock_connect.o menu.o window_manager.o

read_sockeZ.o

cc -o grip draw.o main.o makePez.o petLib.o petri.o postn.o \

58

se_up__rip, o _ransform. o menu. o window_manager, o\

sock_connec_ .o read.socket .o -im -IX11

window_manager, o : window_manager, c dumb_dec, h

menu.o: menu.c pe¢.h

draw.o: draw.c xhead.h pltr.h xdraw.h draw.h pet.h dumb_dec.h

main.o: main.c pet.h dumb_dec.h xdraw.h

makePe_.o: makePe¢.c pet.h dumb_dec.h

peCLib.o: peCLib.c pet.h dumb_dec.h

peCri.o: peCri.c pltr.h draw.h

postn.o: postn.c pltr.h

setup_disp.o: setup_disp.c pet.h pe_2.h dumb_dec.h

setup__rip.o: setup_grip.c pet.h pez2.h dumb_dec.h

setup_arm.o: setup_amm.c pet.h pet2.h dumb_dec.h

setup_vision.o: se_up_vision.c pet.h pe_2.h dumb_dec.h

transform.o: transform.c pet.h pltr.h dumb_dec.h

sock_open.o : sock_open.c pet.h dumb_dec.h

sock_connect.o: sock_connect.c pe_.h dumb_dec.h

read_socket, o : read_socket.c pet .h dumb_dec.h

A.2 ma_n.c

This is the ma_n routine.

NQTICE OF COPYKIGHT

Copyright (C) _ensselaer Polytechnic Institute.

1990 ALL RIGHTS RESERVED.

*_ Permission Zo use, distribute, and copy is granted ONLY

** for research purposes, provided that this no_ice is

*_ displayed and the author is acknowledged.

*- This software is provided in the hope that it will be

,s useful. BUT, in no event will the authors or Rensselaer

*- be liable for any damages whatsoever, includin E any lost

,s profits, los_ monies, business interruption, or o_her

*_ special, incidental or consequential damages arising ou_

** of the use or inability to use (including but no_

,m limited to loss of data or data being rendered

*= inaccurate or losses sustained by third par_ies or a

,s failure of this software _o operaze) even if the user

59

*. has been advised of the possibility of such damages, or

.s for any claim By any other par_y.

*_ This software was developed at the facilities of the

*- Center for Intelligent Robotic Systems for Space

*- Exploration, Troy, New York, thanks to generous project

_* funding by NASA.

.s Package: TokenPasser

*. File: main.c

_Z

** Written By: Michael Mittmann

** Date: 1/30/91

,i P_Irpose: The purpose of this package is to provide a facility

*- for translating petri net transducers into runnable code.

When compiled with suitable net definition files

(see setup_-.c) this package produces code that runs

and displays a set of petri nets which communicate wi_h

each other via internet sockets.

Further instructions, and examples can be found in the

directory TokenPasser. doc.

_t

_S

_t

This file contains the main routine, which:

i) determines if windows are to be displayed.

2) Sets up the windows.

3) forks off a parent To moni_er the windows

3) calls the socket inizilization routines

4) calls the Petri net inltilization routines

5) goes into an infinite loop trying to fire

transitions.

•- Modification History:

,/

_include <siEnal.h>

_include <stdio.h>

_include <Xll/Xlib.h>

#include <X11/Xutil.h>

_include "pet.h"

6O

• include "dumb_dec. h"

#include "xdraw .h"

_define NullArc (-1)

* These ex%erns should all be declares in the setup_-.c files

*/
eztern int hum_transitions,number_of_sockets ;

ex_ern struck: transition world[];

extern char title[] ;

* This ertern is declared in read_socket.c

*/
extern int io_came;

int graphics = TRUE;

int should_pause = FALSE;

int redraw_screen = FALSE;

/* are we doing graphics? */

/* are no transitions enabeled?*/

/. User requested redraw? */

* Data structures needed for X-windows.

*/

Display *display;

Window net_window;

GC gc;

unsigned long foreground, background;

typedef StZnlC_ {

Int

int

Int

int

int

int

int

char

char

char

int

place ;

used;

type ;

tok;

in, out ;

x, y;

party ;

*name ;

*cond ;

*code ;

priority ;

/* True if Place, False if Transition */

/* True if this structure is valid */

/* Indicates if State or Interaction Point */

/* Number of tokens */

/* Number of input and output arcs */

/* Grid Location in the Petri-Net window */

/* Module number */

/* Name of Place */

/* Condition for Transition */

/* Action code for the transitions */

/* Priority of Transition */

61

} pltr_ype ;

typedef struct {

int

int

int

int

int

used;

src;

dest;

srcnext;

destner_;

/* True if this structure is used */

/* Source pltr id for this arc ./

/= Destination pltr id for this arc */

/. Arc id for the succeeding arc from src */

/* Arc id for the succeeding arc to dest */

int yO, xO, yl, x2, yS, x%, yS;

/* Effective Grid coordinates for the arc */

/_ Arc goes through (xO,yO), (xO, yl), (x2,yl),

(x2, y3), (x4, yS), (x4, yS) */
int offO, off1, off2, off3, off4;

/_ Indicates the offset for each segment of the

arc on the corresponding grid line */

} arctype;

int npltr =140 ,narc =140;

pltrtype pltr [140] ;

arctype arc [140] ;

* redraw_signal()

* called when a SIGUSR1 signal is sent (which happens when

* the user requests a redraw.

* Arguments: None.

Returns: Nothing.

* Requirements: The global variable redraw_screen.

./

void redraw_signal(){

redraw_screen = TRUE;

}

* main(argv, argc)

The main routine. It recieves as arguments acommand line

variables. The syntax is currently set up so that if

* this is the main routine it has a usage of:

disp [-fast]

and if iZ is another rouZine iZ has a usage of:

<cmnd> <hosZname> <socketnumber> [-fast]

62

* This routine follows roughly this pseudocode:

* if(fast option is given) Graphics = false;

if (Graphics) set up windov;

if (Graphics)

* {
* fork();

ifCprocess =- parent) run window monitering loop;

* else

*

* initialize sockets ;

* initialize petri_nets ;

create second type of PN data structure

* figure out where the arcs should be placed;

sit in infinite loop trying to fire transitions;

* }

* }

Arguments: argv, argc. (usage descibed above)

* Keturns : Nothing

* Kequirements: Xll library, System V enviroment, PF_INET

* SOCK_STREAM sockets

main (argc, argv)

int argc;

char **argv ;

int i,j ,good_token,pid,tra/1_count = O;

if (strcmp(title, "Dispatcher") == 0){

if ((argc < i) I l(argc > 2)){

fprintf(stderr, "usage: Y,s [-fast] \n",argv[O]);

exit (I) ;

}

}

else if(argc < 3){

fprinZf(stderr, "usage: Y,s <hos_name><socketnumber>

[<host=ame><socketnumber>...] [-fast] \n",argv[O]);

exit(l) ;

}

if (strcmp("-fast",argv[argc-l]) == O) graphics = FALSE;

63

if (graphics) init_window() ;

if(graphics && (pid=fork()) != 0){

XMapRaised (display, net_window);

event_reading_loop(pid); /* note that the program won'%

re%urn

= from this until the user hits q

* in the window.

*/

kill(pid,SIGKILL); /*kill child (laughing like a maniac)*/

XFreeGC(display, go);

XDes%royWindow(display, net_window);

XCloseDisplay(display);

exit(O);

}

else if (graphics){

/* signal to redraw screen */

signal (SIGUSRI, redraw_signal);

/* reset connection to server for display _/

clcse(ConnecZionNumber(display));

if((display = XOpenDisplay("")) =- NULL)

perror("failed XSpenDisplay in child:");

/= open or connect to the sockets

* argv or argo

sock_star_(argc, argv);

(opening them doesn't use

*/

/* define the net

make_net();

./

/* transform to seecondary data structure

fill_pltr_arc_map(world);

,/

/* mark initial conditions */

(void)initialize_marking();

/* position the arcs */

for (i=O;i<narc;i+÷)arc_postn(i);

I. dump on the screen *I

64

draw();

/I the infinite loop */

while (TRUE)

{

should_pause = TRUE;

for (j =0; j< hUm_transitions;j++)

<

if ((good_token = transition_enabled_p(TBAN

world [j])))
{
fire_transition(TRAN world[j] ,good_token) ;

refill_places (FALSE) ;

/* this line stops the */

/* program at some number-/

== 0))

/* of iterations, delete for-/

/* normal usage. */

should_pause = FALSE;

}
if (do_came) (void)do_handler(number_of_sockets) ;

refill_places (FALSE) ;

}

if(redraw_screen) tel_screen() ;

redraw_screen = FALSE;

if(should_pause) pause();

}
}

else{

/-

* We're here iff we're not doing graphics.

*/

/. open or connec: to sockets ./

sock_start(argo, argv) ;

if ((++Zran_count -- MAX_NUM_CYCLES)

&_ (strcmp(title, "Dispatcher")

exit_program() ;

/* make the Pezri net */

make_net () ;

/* transform to the second data structure */

fill_pltr_arc_map (world) ;

/* initialize the net */

65

(void) initialize_marking() ;

/* place all of the arcs -/

for (i=0 ;i<narc ;i++)arc_postn(i) ;

/- start infinite loop */

while (TRUE)

<

should_pause = TRUE;

for (j =0; j< hum_transitions;j++)

if ((good_token - transition_enabled_p(TRAN

world[j])))

{

fire_transition(TRAN world[j] ,good_token) ;

/*This line stops the program*/

MAX_NUM_CYCLES)

/_when 52 transitions have ,/

-= 0))

/* fired, remove for normal use */

if((++tran_count ==

_(szrcmp(title, "Dispatcher")

exit_program() ;

should_pause = FALSE;

}

if(io_came) (void)io_handler(number_of_sockets) ;

}

if(should_pause) pause();

}

}

>

- Author's note:

• running different sets of code depending on if graphics

• is true or false is very ugly. This allows the

, possibility of the net running differently if a

modification is made _o one loop but mot _o the other.

The only way I could see of fixing this was to put several

extra if szatemenZs inZo Zhe loop. I didn't like this

solution, but given the fac_ _haz most of the delay comes

66

* from the socket communication, the effects of this

modification may be negligable.

./

A.3 draw.c

This filecontainsthe drawing routines.

NOTICE GF COPYRIGHT

Copyright (C) Rensselaer Polytechnic Institute.

1990 ALL RIGHTS RESERVED.

** Permission to use, distribute, and copy is granted ONLY

** for research purposes, provided that this notice is

** displayed and the author is acknowledged.

** This software is provided in the hope that it will be

** useful. BUT, in no event will the authors or Rensselaer

** be liable for any damages whatsoever, including any los_

*= profits, lost monies, business interruption, or other

,1 special, incidental or consequential damages arising out

*- of the use or inability to use (including but not

** limited to loss of data or data being rendered

** inaccurate or losses sustained by third parties or a

*" failure of this software to operate) even if the user

** has been advised of the possibility of such damages, or

** for any claim by any other party.

** This software was developed at _he facilities of the

** Center for Intelligent Robotic Systems for Space

.. Exploration, Troy, New York, thanks to generous project

,1 funding by NASA.

_z

** Package: TokenPasser

** File: draw.c

** Written By: Michael Mittmann

** Date: 1/30191

67

st

** Purpose: The purpose of the package can be found in the file

** main.c.

*= This file contains the routines associated with the

_s drawing and redrawing of the Petri net on the

.. Xwindow.

** Modification History:

*/

* draw.c:

* Handles all the draeing of Places/Transitions

* /Arcs/Hilighting in the Petri-Net window.

-,/
#include <stdio .h>

#include <math. h>

#include "xhead. h"

#include "pltr. h"

#include "xdraw. h"

#include "draw. h"

#include "pet. h"

#include "dumb_dec.h"

_define MAX_PLACES 70

#define FLASHTIME 150000

/* PUT IN INCLUDE FILE */

exZern int num_transitions;

#define dMark 8

#define dArcAng 20

#define SIZE_RECT_X ((int)(GridSize * 1.6))

#define SIZE_RECT_Y GridSize

#define RECT_X 0

_define RECT_Y 0

#define Dia GridSize

/*

* mag(x, off) Converts the Grid Coordinates to the real

* coordinates on the screen, x is _he grid number, off is

* the offset on that grid.

./

#define mag(x, off) ((x • GridSize + off * OffSize + GridOff))

68

S-

draw()
Draws all the Places, Transitions and Arcs.

Also fills the places, and draws the "tape".

Argument s: None

Returns : Nothing

Requirements: This requires an opened X-window, and filled

. pltr, and arc data structures.

void draw()

{
int i ;

for(it0; i<npltr; i++)

if (pltr[i].used) {

if (pltr[i] .place)

dr_place(i) ;

else

dr_trans (i) ;

}
for(i=O; i<narc; i++)

if (arc[i] .used)

dr_arc(i) ;

draw_tape() ;

ref ill_places (TRUE) ;

}

* draw_tape()

Draws the menu tape..

Note that it clears the area first, so that the words

. aren't overwriting anything else and are legible.

* Arguments: None.

Returus : Nothing.

. Kequirements: An open X-window, and the rou%ines in menu.c

void draw_tape()

{

int i;

69

for (i=O ;i<SIZE.MENU ;i++)

<

draw_tape_box(i) ;

}

/= erase all previous arrows... =/

st_erase() ;

for (i=O ;i<S IZE_MENU; i++)

{

XFilIArc(display, net_window, go, SIZE_RECT_X/2 +

i*SIZE_RECT_X,

SIZE_RECT_Y, Dia/2, Dia/2, 64_60, 64_240);

}

/* and draw an arrow pointing to the current menu selection */

st_normal () ;

XFillArc(display, net_window, go, SIZE_RECT_X/2 +

current_head_of_% ape ()

SIZE_P_ECT_X, SIZE_P_ECT.Y, Dia/2, Dia/2, 64=240, 64_60);

}

* draw_tape_box()

* This draws an individual tape box.

* Arguments: i, an integer specifying which box is to be drawn

= Returns: Nothing.

, Requirements: An open X window, and the routines in menu.c

void draw_tape_box(i)

in% i;

<

char *string;

sZ_erase();

XFillRectangle(display, net_window, go, RECT_X +

i*SIZE_P_CT_X, P_CT_Y, SIZE.RECT_X, SIZE_RECT_Y);

st_normal(J;

XDrawRectangle(display, net_window, go, RECT_X +

iJSIZE_RECT_X, RECT_Y, SIZE.RECT_X, SIZE.RECT_Y);

string= get_menu_string(i);

XDrawString(dispiay, net_window, go, P_ECT_X+i*SIZE_RECT_X,

SIZE_RECT_Y /2, string, strlen(string));

>

7O

dr_place(i)

Draws the place, stored in pltr[i] .

• A Circle is drawn, with tokens inside and its name,

• truncated %o 5 chars is drawn next to the circle, along

• with its id number (to be used in later verification.)

• Arguments: i, an integer specifying which place to draw.

• Returns: Nothing.

Requirements: An open X-window, and a filled pltr data

structure.

,/

void dr_place(i)

in% i ;

<

inz x, y;

char name [I0] ;

x z mag(plZr[i] .x, O) ;

y = mag(plZr[i] .y, O) ;

XDrawArc (display, net_window, gc,

• - Dia/2 , y - Dia/2,

Dia, Dia,

O, 360 .64);

sprinZf (name, "?,2d:", i) ;

if (plZr[i] .name != NULL)

sZrncat(name, pltr[i].name, 5);

XDrawString(display, net_window, gc,

x + 2*Dia/4, y,

name, s%rlen(name));

}

/i

* empty_place(i)

, This routine draws a white filled circle in a place,

, effectively erasing all of the tokens that were drawn there.

* Arguments: i, an integer specifying which place to empty.

, Returns: Nothing

*Requiremen=s: An open X-window, and a full pltr data structure

71

empty_place(i)
in_ i;
{

in_ x, y;

x = mag(pltr[i] .x, O) ;

y = mag(pltr[i] .y, 0);

st_erase();

XFillArc (display, net_window, gc,

x-(Dia-2)/2 , y - (Dia -2)/2,

Dia-2, Dia-2,

O, 360 *64);

st_normal();

}

* refill_places(new)

* This routine draws tokens in the places.

* If new== TKUE then it redraws all of the tokens, othervise

it only redraws the tokens in places where the number of

* tokens has chaulged.

* This routine also takes care of redrawing the "tape"

* Arguments: A boolean specifying If all places which have

* tokens are to be redrawn, or only the ones which

* changed their number of tokens.

* Returns: Nothing.

Kequirements: An open X-window, a full pltr data structure,

- and the routines in menu.c

void refill_places(new)

int new;

{
static int has_tokens[MAX_PLACES] = {0};

tokens

* in each place the

last

/* record of # of

72

* time this routine

was

s

called.

*/

s_atic int last_head_position = O;

int i,j;

char *s_ring;

/* checking each place, redraw the tokens if needed */

for (i = 0; i < MAX_PLACES;i++)

{

if (pltr [i+num_transitions] .used)

{
if ((has_tokens[i] < pltr[i+num_transitions].tok) l1

new)

{

empt y_place (i+num_t rans it ions) ;

for (j = pltr[i+num_transitions].tok; j>0;j--)

drawmark (pltr [i+num_transit ions] .x,

pltr [i+num_trans it ions] .y, j) ;

has_tokens [i] = pltr[i+num_transitions] .tok;

}
else if ((has_tokens[i] >pltr[i+num_transitions] .tok) I I

new)

(

empty_place (i+uum_t tans it ions) ;

if ((has_tokens[i] = pltr[i+num_transitions].tok

) _=o)
for (j = pltr[i+num_transizions] .tok; j>O;j--)

drawmark (pltr [i+num_trans it ions] .x,

pltr[i+num_tramsitions] .y,j) ;

}
>

}
/* if the pointer for the head of the tape has been incremented,

redraw

* the tape

*/
if((i= current_head_of_tape()) != last_head_position)

(

st_erase() ;

XFillArc(display, net_window, gc, S[ZE_KECT_X/2 +

73

last_head_position* SIZE_KECT_X,
SIZE_KECT_Y, Dia/2, Dia/2, 64-240, 64*60);

X/_illKectangle(display, net_window, gc, KECT_X +

last_head_position*SIZE_KECT_X +I , KECT_Y +I ,

SIZE_KECT_X -2 , SIZE_KECT_Y -2);

st_normad.();
string= get_menu_string(last_head_position);

XDrawString(display, net_window, gc, RECT_X+

last_head_position*SIZE_KECT_X,SIZE_KECT_Y /2,

string, strlen(string));

XFillArcCdisplay, net_window, gc, SIZE_KECT_X/2 + i

* SIZE_KECT_X, SIZE_KECT_Y, Dia/2, Dia/2,

64*240, 64*60);

last_head_position = i;

}

XFlush(display);

}

* angoff(x, ang)

* (angle offset) is used to calculate to place the

s tokens inside a place.

* Ar_nlments: x, an integer specifylng which token this is,

* ang, the desired offset/token (in degrees)

= Returns: A double spcifying how many radians off of the base

* direction the token should be placed.

Requirements: M_PI is in math.h

, */

double

angoff (x, ang)

int x, ang;

{
double res;

}

res = x * ang * M_P! / 180.0;

return res;

74

* dra_mark(x, y, _)
* draws Nth token at (x,y). Tokens are drawn in a

* circular fashion inside the Place. The first token

* is placed in the center, and the rest are drawn in a

, counterc!ockwise fashion, only one round. If too many

, tokens are there, they may overlap.

* Arguments: x,y integers, specifying the location of the

. place in which the token is to be drawn, n, an

. integer specifying which token it is.

* Returns: Nothing.

= Requirements: An open X window.

void drawmark(x, y, n)

int x, y, n;

{

int xx, yy;

xx --mag(x, 0);
yy = mag(y, 0);

n--;

if (n _= o) {

xx += dMark * cos(angoff(n, 3*dArcAng));

yy -= dMark * sin(angoff(n, 3*dArcAng));

}
if (n>=O)

{

XFillArc(display, net_window, go,

xx - dMark/2, yy - dMark/2,

dMark, dMark,

O, 360-64);

}
}

* dr__rans(i)

* Draws the transition (a horizontal line, followed

by its id) s_ored in "pltr[i]";

I

* Arguments: i, an integer spcifying which transition.

* Returns: Nothing.

75

* Requirements: An open X-window, and the pltr data structure.

void dr_trams(i)

int i ;

int x, y;

char name [3] ;

x = mag(pltr[i] .x, 0) ;

y = mag(pltr[i] .y, 0) ;

XDrawLine(display, net_window, gc,

x - Dia/2, y,

x + Dia/2, y);

sprintf(name, "%2d:", i);

XDrawString(display, met_window, gc,

x + 2*Dia/4, y,

name, strlen(name));

}

t

* dr_arc(i)

. draws an arc, stored in arc[i]. The five segments

of the arc are drawn as straight lins. The Arrow mark

* a_ the end of _he arc is created as a small filled arc.

i Arguments: i, the _umber of zhe arc.

* Returns: Nothing

* Requirements: An open X-window, and the arc data structure.

void dr_arc(i)

int i;

{
XPoint i[6];

l[O].x = mag(arc[i].xO, arc[i].offO);

l[O].y = mag(arc[i].yO, 0);

if (pltr[arc[i] .src] .place)

l[O].y += Dia/2;

76

iEi] .x = I[0] .z;

111].y = mag(arc[i].yl, arc[i].offl);

112].x = mag(arc[i].z2, arc[i].off2);

1[2].y =

113].x = l[2].x;

113].y :" mag(arc[i].y3, arc[i].off3);

114].x = mag(arc[i].xd, arc[i].off4);

114].y = 113].y;

l[S].x = l[4].x;

115].y = mag(arc[i].y5, 0);

if (pltr[arc[i] .desZ] .place)

115].y --- Dia/2;

XDrawLines(display, net_window, go,

I, 6, CoordModeOrigin) ;

XFillArc(display, net_window, go,

l[5].x-Dia/4, l[5].y-Dia/4,

Dia/2, Dia/2,

(45)*64, 90-64);

}

* A routine used to hilight a place or transition for a

shor_ time, then u/_hilight it. Note, for some reason

* GXinver_ works, while GXxor doesn't.

* Argnments: i, the mumber of the transition

. Keturns: Nothing

* Kequirements: The pltr data structure, and an open X-window

void f!ash_pitr(i)

int i;

{

int x,y;

XSetFuncZion(display, gc, GXinvert);

x = mag(plZr[i].x, 0);

T7

y = mag(pltr[i] .y, O);

XFillArc (display, net_window, gc,

x - Dia/2 , y - Dia/2,

Dia, Dia,

O, 360 .64);

XFlush(display);

usleep((unsigned)FLASHTIME);

XFillArc (display, net_window, gc,

x - Dia/2 , y - Dia/2,

Dia, Dia,

O, 360 ,64);

X/lush(display);

XSetFunction(display, gc, GXcopy);

}

I

• st_erase()

changes the fore_rround to white so that anything

can be overwritten.

Note that this is being used because

XSetFunction(display, gc, GXC!ear); didn't seem to work...

• Arguments: None

= Returns:Nothing

• Requirements: The display data structure.

./

void st_erase()

{

XSetForeground(display, gc,

WhitePixel(display,DefaultScreen(display)));

}

* s:_normal()
* (set normal mode), undoes the effect of st_erase, if

, used earlier. Using st_normal multiple times should

not cause any harm.

78

,*, ArEuments: None

. Returns : Nothing.

,*, Requirements: The display data structure.

i
./

void st_normal()

{

XSetForeground (display, gc,

BlackPixel (display, DefaultScreen (display))) ;

>

* void ref_screen()

Redraws the whole screen.

. Arguments: None

. Ke_u1-_s: No_hing

. Keculrements: The display and net_window data structures.

./

void r_2 screen()

{
XCi;_rWindow(display, met_window); /= clears the petri-net

Wll _W I/

();

.%.4

net.

r _kepet.c

T _ file contains the routines needed to produce the data structures defining

_c

11

IZ

NOTICE OF COPYKIGHT

Copyright (C) Kensselaer Poly_cechnic Institute.

1990 ALL RIGhtS RESERVED.

** Permission to use, distribute, and copy is granted 0NLY

_. for research purposes, provided that this notice is

displayed and the author is acknowledged.

, This software is provided in the hope that it will be

79

*= useful. BUT, in no evens will the authors or Rensselaer

** be liable for any damages whatsoever, including any lost

** profits, lost monies, business interruption, or other

*= special, incidental or consequential damages arising out

*_ of the use or inability to use (including but not

*= limited to loss of data or data being rendered

,: inaccurate or losses sustained by third pa_ies or a

.. failure of this software to operate) even if the user

*= has been advised of the possibility of such damaEes, or

** for any claim by any other pa_y.

*- _'his software was developed at the facilities of the

*= Center for Intelligent Robotic Systems for Space

** Exploration, Troy, New York, thanks to Eenerous project

*= funding by NASA.

*- Package : Token2asser

m_

.. File: makePet.c

*- Written By: Michael Mittmann

_S

*" Date: 1/30/91

*= Purpose: The purpose of the package can be found in the file

** main. c.

*= This file contains routines to fill the data s_ructures

*_' defining _he net.

_S

=* Modification History:

*/

#include <varargs. h>

#include <sys/Zypes.h>

_include <sys/Zimeb. h>

_include "pet.h"

#include "dumb_dec.h"

ex_ern int sock_send();

ex_ern s_:1-ucZ transition world[I;

ex_ern stl-uct place_ptr place_p_r_array[] ;

8O

extern int menu[];

/i

I place_place()

s This routine is used to declare the location of a place

on %he graphic display...

I

ArEuments: place_hum, an integer specifying a place.

. x_loc, y_loc, the locations on the screen.

* Keturns: Nothing

i Requirements: None.

void place_place(place_num,x_loc, y_loc)

int x_loc, y_loc,place_num;

if ((x_loc _ 2 == I) li(y_loc _ 2 == i))

printf("warning the location of place _d is odd

\n",place_num);

place_ptr_array[place_num].x_loc = x_loc;

place_ptr_array[place_num].y_loc = y_loc;

}

• identity (value)

• this is the default routine used for the coloration

and decoloration of tokens. I_ doesn't change the

token value.

Arguments: value: and integer.

• Returns: value: the same integer.

• Requirements: reflexive identity property.

int identity(value)

int value;

retuznl (value) ;

}

• inizialize_transition(fcn_ptr,ini:_tran,x-loc, y_loc)

• This function points both the prepiaces and the

81

post places of a transition to NULL, and points

• the transition to the function specifies in the call.

• It should be called with a call like:

• initialize_transition (function_name, pointer_to_transition) i

Argents: fc_u_ptr: a pointer to the function which

the transition fires.

init_tran: a pointer to the transition

s being initialized.

z_loc, y_loc, the x and y screen locations.

Keturns : Nothing

Requirements: The obvious.

void inizialize_transizion(fcn_pzr,iniZ_tran,x_loc, y_Ioc)

int (*fca_pZr) () ;

struct transition *init tran;

{

init_tran->routine = fcu_ptr;

init_tran->pre_places = NULL;

init_Zran->post_places = NULL;

Init_tran->enabled_by = NULL;

init_zran->menu_requirements - NULL;

Init_tran->consumes_menu - TRUE;

if ((x_loc Y, 2 == I))1 (y_loc 7.2 =I I))

printf("warning the location of transition 7.d is odd\n"

,init_tran - _(world[O])) ;

init_tran->x_loc = x_loc;

init_tran->y_loc = y_loc;

}

* void add_pre_list(va_alis%)

, This function should be called with a call like:

, add_pre_!isz(&(zransizion.pre_place), &intl, &int2 ,NULL);

, to add integers inzl and int2 to the precurser list for

transition

, (note transition is a data szruczur_ of type-transition)

s

82

• this takes a pointer to a transition, and a list of

• pointers to integers and forms a linked list of pointers

• to integers s_ar_ing with the pointer pre_places in the

• specified transition.

• For some clarification see varargs(3), which will clarify the

variable

number of argents...

• ArEuments: a list of pointers as described above.

Keturns : Nothing

Kequiremen_s: Link in var_args.h

, "_/

void add_pre_list(va_alist)

va_dcl

{

va_lisZ pointer;

strucz pre_pointer *new_place, *_old_place;

strucz place_ptr .place_header;

va_sZart(pointer);

old_place = va_arg(poinzer, strucZ pre_pointer .*);

while ((place_header=va_arg(pointer,struc: place_pit a)) !=

NULL)

{

new_place = (struc_ pre_pointer *)

malloc(sizeof(szrucz pre_pointer)) ;

if (new_place == NULL)

{perror ("add_preplace:mal!oc:");

exi:(-l);

}

new_place->place = place_header;

new_place->nex__place = NULL;

new_place->decoloration_rou_ine = identity;

•old_place = new_place;

previous ./

old_place = a(new_place->nexZ_place);

/.new_place->nexz_place*/

}

place_/

va_end(poinZer);

}

/s point the

/* at the current

83

/*

add_post_l ist (va_alisZ)

This function should be called with a call like:

add.post _list (& (transition. po st_place) ,&int I,rvl,

• &int 2, rv2, _int3, rv3, NULL) ;

• to add integers inzl int2 and inz3 to the post

• list for transition

• (note transition is a data structure of type

• transition, and rv are integers which = 0 if the

• data is local, and = the socket number where the

= data belongs if the data isn't local.)

= this takes a pointer to a transition, and a list of

* pointers to integers and forms a linked list of pointers

* to integers starting with the pointer post_places in the

i specified transition.

* For some clarification see varargs(S), which will clarify the

variable

number of arEttments...

* Arguments: a list of pointers as described above.

* Returns: nothing

* Requirements: Include var_args.h

void add_post_list (va_alisz)

va_dcl

{

va_list pointer;

struc_ posZ_pointer *new_place, --old_place;

struc_ place_p_r *place_header;

va_sZart.(poinZer);

old_place = va_arg(pointer, sZrucz post_pointer **);

while ((place_header= va_arg(polnZer, s_ruc= place_ptr *)) i=

NULL)

{

aew_piace = (strucz post_pointer *)

m_!loc(sizeof(szrucz post_pointer));

if (new_place == NULL)

{perror ("add_poszplace:mal!oc:");

exit(-_);

}

84

new_place->remote = va_arg(pointer, int) ;

new_place->place = place_header;

new_place->colorazion_routine = identity ;

new_place->da_a_trans_routine = sock_send;

new_place->next_place = NULL;

*old_place = new_place;

*/

old_place = &(new_place->nex__place) ;

*/
}

va_end (pointer) ;

}

/" point previous to

/*this one

* inscruct_in_menu_p(trams)

* this routine checks to see if there is a list of

"menu" commands which are required for the

* transitions to be fired. If the transition requires

* a menu command, this routine goes through the list

* of possible enabling commands, and checks to see if

any of them match the current command.

* Arguments: a pointer to the transition to be checked.

* Returns : True/False

* Requirements: the routines in menu.c

int instruct_ in_menu_p (_rans)

Stl'11ct tra21siZion *Zra/is;

<

inZ men_val;

struct enabelors *cur_menu_allowed;

if (trans->menu_requirements == NULL)

reZura (TRUE);

if ((men_val = get_menu_value()) == NO_MENU_CMND)

return(FALSE);

for (cur_menu_allowed= zrans->menu_requirements;

cur_menu_allowed!=NULi;

cur_menu_allowed = cur_menu_allowed->next.enabelor)

(

if (cur_menu_allowed->enabelor == men_val)

85

}

return(TRUE);

return (FALSE);
}

* add_token(place_mum, data)

This routi_le adds a token to the list of tokens attached

* to a place, and calls a routine that adds one to the

* _umber of tokens in the pltr represneta_ion.

* Arguments: place_hum: integer declareig whaigh place

* ge_s the token.

* data: integer = the value of the token.

* Returns : Nothing.

* Requirements: the pltr and normal da_a structures.

void add_token(place_num, data)

int data, place_hum;

{

struct place_contains *new-place, ,temp;

if ((newplace = (sZrucZ place_contains *)

malloc(sizeof (struct place_contains))) == NULL)

perror("add__oken:malloc:");

exit(0);

}

temp = place_ptr.array[place_num].place;

place_ptr_array[place_num] .place =newplace;

newplace->objecz = data;

newplace->nexz_contents = temp;

/* pu_Zing tokens in the drawing representation */

(void) add_tok_in_pl_r_rep(place_num);

}

* remove_token (place_hum, data,trans,decolorazion_routine)

86

• This routine searches through the data in place place_hum,

• and if either:

• it can find a token such that:

decoloration_routine(token) == data

or:

the transition is enabeled by any token, and it

finds a token.

* It removes that token, and re_urns OK.

. If this somehow fails, the routine returns an error.

Arguments: place_mum: the place which has the token.

* data: the value of the token to be removed.

* trams: %he transition which may have an

* enabeling requiremmen_.

* decoloration_routine: a pointer.

. Returns: 0K/EPJ_R

. Requirements: Just all of the data structures.

S ./

remove_token (place_num, data,trans,decoloration_routine)

int data, place_hum;

struct transition -_rans;

int (*decolorazion_routine)();

{

sZruct place_contains .current, .*previous;

int any_data;

any_data = (Zrans->enabled_by == NULL);

previous = (struct place_contains *-)

(place_pzr_array [place_Rum]) ;

for <current = place_ptr array[place_num].place; current !=

NULL ;

current = current->next_contenZs)

{

if (decoloration_routine != NULL)

{
if (<data ==

(*decoloration_routine) (currenz->object))])

any_data)

{

*previous = current->next_contents;

free (<char .) current) ;

<void) remove_zok_in_plZr_rep(place_num) ;

return(OK) ;

87

}

else previous = &(current->next_contents) ;

}
else

{

if ((data == current->objec_) I I a_y_data)

{

•previous = current->next_contents;

free ((char .) current);

remove_t ok_ in_pltr_rep (place_hum) ;

return(OK) ;

}

else previous = _(current->next_conten_s) ;

}

}
return (E/_B/]R) ;

}

* declare_enab_tokens (va_alisZ)

* This is a function which declares either the menu value

required Co fire a transition, or the token values

required to fire a (colored) transition.

- This function should be called with a call like:

- declare enab_tokens(transition->(whichever), intl,

- int2 ,int3, NULL) ;

- to add integers intl int2 and int3 to the enabelor list

. for transition

- (note transition is a data structure of type transition)

((whichever) is either enabeied_by or menu_requirements)

this takes a pointer to a enabelor and a lis_ of pointers

to integers and forms a linked list of pointers to integers

* star_ing with the pointer enabelor in the specified

transition.

, For some clarification see varargs(3), which will

- clarify the variable _umber of arguments...

* Arguments: a list of pointers as described above.

, Keturus : _othing

- Kequirements: Include var_args.h

88

,/

void declare_enab_tokens(va_alis_)

va_dcl

{

va_lis_ pointer;

s_ruc_ enabelors *new_one, s_old_one;

in* enab__okens;

va_s_ar_ (pointer) ;

old_one- va_arg(pointer, s_ruct enabelors **);

while ((enab_tokens=va_arg(poinZer,in_)) != NULL)

{

new_one= (sZruc_ enabelors *)

malloc(sizeof (struc_ enabelors));

if (new_one == NULL)

{perror ("declare_enabelor_tokens :malloc:") ;

exit(-l);

}

new_one->enabelor- enab__okens;

new_one->next_enabelor= NULL;

sold_one = new_one;

,/

old_one- _(new_one->nex__enabelor);

/*new_place->nexZ_place./

}

places/

va_end(poinZer);

}

/* point the previous

/* a_ the current

*

* fill_pos__pnZr(place, *ran, data_*tans, coloration)

- This routine puts some addional information into _he

. the post_pointer between the given place and _ransiZion.

. This is used for declaring a particular data_transition

, routine (oCher than the default (sock_send) or a

, coloration routine,

* Arguments: place, tram: inZe6ers referring to _he place

- and transition which need the infiorma_ion attached.

* date_*tans, coloration, _he routines which

. will ge_ a_Zached.

89

s Returns: True/False (depending on sucess)
s Requirements: Just the data s_ruc_ures.

int fill_post_pntr(place, tran, data_trans, coloration)

in_ place, tran;

int (*data_trans) (), (scolora_ion) () ;

{

s_ruct post_pointer _temp;

int sucess ;

sucess = FALSE;

for (temp= world[tran].post_places; temp != NULL;

temp= temp->next_place)

if ((temp->place - &place_ptr_array [0])== place)

{

temp->data_trans_routine = data_trans ;

temp->coloraZion_routine = coloration;

sucess = TRUE;

}
}

}

return(sucess) ;

- fill_pre_pn_r(place, tran, coloration)

* This routine puts some addional information into the

the pre_pointer between the given place and transition.

s This is used for declaring a particular coloration routine.

Arguments: place, tran: integers referring to the place

and transition which need the infiormation attached.

coloration, the routines to be attached.

Returus: True/False (depending on sucess)

Requirements: Just the data structures.

int fill_pre_pntr(place, tran, coloration)

int place, tran;

int (*coloration) () ;

{

struct pre_pointer .temp;

9O

int sucess;

sucess = FALSE;

for (temp = world[tran] .pre_places; temp != NULL;

temp = temp->nexZ_place)

{

if ((temp->place - &place_ptr_a/ray [0])==place)

{

temp->decoloration_routine = coloration;

sucess = TKUE;

}
}

}
return (sucess) ;

A.5 menu.c

This 61e contadns the routines needed to control and manipu|ate the _tape".

_Z

NOTICE OF COPYRIGHT

Copyright (C) Kensselaer Polytechnic Institute.

1990 ALL RIGHTS RESERVED.

., Permission to use, distribute, and copy is granted ONLY

** for research purposes, provided that this notice is

** displayed and the author is acknowledged.

Z_

** This software is provided in the hope that it will be

** useful. BUT, in no event will the authors or Kensselaer

** be liable for any damages whatsoever, including any lost

** profits, lost monies, business interruption, or other

*- special, incidental or consequential damages arising out

** of the use or inability to use (including but not

*= limited to loss of data or data being rendered

** inaccurate or losses sustained by third par_ies or a

** failure of this software to operate) even if the user

*- has been advised of the possibil!ty of such damages, or

** for any claim by any other par_y.

*- This software was developed at the facilities of _he

91

** Center for Intelligent Robotic Systems for Space

*. Exploration, Troy, New York, thanks to generous project

,. funding by NASA.

_s

a" Package: TokenPasser

_z

** File: menu.c

** Written By: Michael MitZmann

_, Date: 1/30/91

=- Purpose: T'ne purpose of the package can be found in the file

** main. c.

** This file contains the routines to manage the "tape"

** for the PNT

*= Modification History:

*/

_include "pet .h"

ex_ern int menu[];

int head = O;

int tail = O;

get _menu_ st ring (menu_ slot_number)

* This routine returns a string associated with the tape

* command in tape location menu_slot_number.

Ar_zments: menu_slot number, a_ integer, specifying

i which menu slo_.

* KeZurns: a character string associated with the command

= in that slot.

Kequiremenzs : none.

./

char *gez_menu_s_ring(menu_slo__number)

int menu_slot_Dumber;

static char *menu_strings[J ={"empty ",/* Note that this list

should */

"CalK ",/_ be in the same order

92

as */

"Move ",/* list in pet.h _I

"Approa" ,

"Ca_IV ",

"Grip " ,

"Kel " J

"MeaFo " ,

"GoFor ",

"MeaPo ",

"GoPos ",

"Cross " ,

"Retur " ,

"Look " J

"Find " ,

"Conti ",

"Slave "};

return (menu_strings [menu [menu_slot_number]]) ;

}

* current_tail_of_tape()

* This routine esists in case anyone needs to k-now if

new commands have been written to the tail of the tape..

Arguments:none

Returns:integer location of tail.

Requirements: none
./

int current_tail_of_tape()

{

return(tail) ;

}

* current_head_of_tape

* This routine is normally used so that outside routines

* can tell if tape commands have been removed.

. Arguments:none

Returns: integer specifying location of head of tape.

* Requirements: none

93

.,/

int current_head_of_tape()

{

return {head) ;

}

• get_menu_value ()

, This returns the value of the command currently at

• the head oT the tape

• Arguments: none

Returns: int. value of command at head of tape, or error.

Kequirements : none

int get_menu_value()

{
if (head != tail)

return (menu [head]) ;

return (NO_MENU_CMND) ;

}

* insert_menu_command_immediate(trend)

This inserts the tape command ¢mnd at the head of

_he tape, moving all of the other commands back one slot.

Arguments: cmnd, tthe integer value of the new command

- Keturus : L_J_QR/QK

* Requirements: conservation of momentum.

ins e r-t:_ menu_ trend_ immedi at e (cmnd)

enum tape_cmnd cmnd;

{

if (((tail÷l)7. SIZE_MENU) == head) return (F_W_0R);

head = (head-I+SIZE_MENU)Y, SIZE_MENU;

menu[head] = (int)c_Id;

return(OK) ;

}

/S

• add_menu_cmnd (cmnd)

94

* This places cmnd at the tail of the command tape.

* Arguments: cmnd, the integer value of the new command.

* Returns: I!_.ROR/OK

* Requirements: none.

,/

add_menu_c.mnd(cmnd)

enum tape_cmnd cmnd;

{
if (((tail+!)Z SIZE_MENU) _ head) return (ERROR);

menu[tail] = (int)cmnd;

if (++tail == SIZE_HENU) tail = O;

return (OK);

}

* increment_menu_ptr()

* This command increments "head" to the next command.

* The option of not doing this for any tape command

* exists because as Fei-Yue describred the PNT, using

* a tape command doesn't necessarally increment you to

the next command.

Ar_nnments:none

Returns:Error/ok

* Requirements:none

...... • /

increment _menu_pt r ()

{
if (tail == head) return (ERROR);

menu[head] = (int) Empty;

if <++head == SIZE_MENU) head=0;

re=urn <0K) ;

}

A.6 petLib.c

This _le contains most of the routines which are used h_ the manipulation of

the Petri net. (eg. all the routines for firingthe transitions...)

95

/s

_s

is

lZ

NOTICE OF COPYRIGHT

Copyright (C) Kensselaer Polytechnic Institute.

1990 ALL RIGHTS KESEKVED.

** Permission zo use, distribute, and copy is granted ONLY

i. for research pu/-poses, provided that this notice is

11 displayed and the author is acknowledged.

11

11 T11is softw_ure is provided in the hope that it will be

i. useful. BUT, in no event will the authors or Kensselaer

11 be liable for any damages whatsoever, including any lost

1. profits, lost monies, business interruption, or other

11 special, incidental or consequential damages arising out

11 of the use or inability to use (including but not

11 limited to loss of data or data being rendered

i. inaccurate or losses sustained by third par_ies or a

11 fail%ire of this software to operate) even if the user

11 has been advised of The possibility of such damages, or

1. for any claim by any other pal-ty.

Is

11 l'his softw_.re was developed at the facilities of the

i= Center for Intelligent KoSotic Systems for Space

.= Exploration, Troy, New York, thanks to generous project

11 funding by NASA.

11

"- Package: Toke_asser

11

i. File: petLib.c

11

** Written By: Michael Mittmann

.1 Date: I/_0/91

ml

11 Purpose: T_e purpose of the package can be fou/Id in the file

** main.c.

i. This file contains routines used to manipulate the

.1 Petri nets (eg, fire transitions, check for enabeled

11 transitions)

11

•I Modification History:

96

./

#include <varargs.h>

#include <sys/_ypes.h>

#include <sys/timeb.h>

#include <s_dio.h>

#include "pet.h"

#include "dumb dec.h"

exZern struc¢ place_ptr place_ptr_array[] ;

ertern struct _ransition world[];

ertern int graphics ;

ertern char title[] ;

* A routine used in timing.

* the input "old" is a boolean which is true if the

* func¢ion has been called before, and false if it has no¢.

s

* the value returned is _he number of milliseconds since

this routine was last called.

* Ar_unen¢s: old: a boolean.

* Re¢urus: _he integer number of milliseconds passed since

* the routine was las_ called.

. KequiremenZs: _imeb.h

in_ time_dill(old)

int old;

{
static Zime__ seconds = O;

s_a_ic unsigned shol-Z millisec = O;

s_ruct timeb space;

inz ret_vaiue;

ftime(&space);

if <old){

ret_value = lO00,(space.time-seconds) ÷

(space.millitm-millisec>;

seconds = space._ime;

mil!isec = space.milliZm;

97

re_urn(ret_value);

}
else {

seconds = space.time;

millise¢ = space.millitm;

return(-I);

}

}

/_ ==

* This rou_ineis called repeatedly to save the time

* difference between the last time time_dill was called.

S

* Ar_nmen_s: none

* Returns: i

Requirements: timeb.h

. .==..==.**=****=...****..._.=***...==*****_**********/

in_ time_holder_l [I000] ;

int rec_timel ()

static int a/r_counter=0;

static int first_call = TRUE;

if (f irs__call) {

firs__cal! = FALSE;

t ime_diff (FALSE) ;

}
else time_holder_l[arr_counter+÷] = time_diff(TKUE);

return (i);

}

* This rouTineis called repeatedly to save the time

difference between the lasZ time time_dill was called.

ArEumenZs: none

* Re_urus: 1

KequiremenZs: _imeb.h

._=_=_=m_*m=_1_mm_m__*__m_*_*__/

inZ time_holder_2 [I000] ;

in_ rec_time2 ()

static inz art_counter=0;

98

time_holder_2[arr_counter++] = time_diff(TKUE) ;

return (I) ;

* This routine prints out the time_dill numbers to a file

* then exits the program.

* Ar_ruments: none

* Returns : none

* Kequirements :none

void exit_program ()

{

int i ;

FILE *fp ;

fp = fopen<"outl", "w");

for (in0 ;\<MAX NUM_CYCLES/2; i++)

fprintf(fp, "_,d \n",time_holder_l[i]) ;

fclose (fp) ;

fp = fopen("out2", "w");

for <in0; i<MAX_NUM_CYCLES/2; i++)

fprintf(fp, "Y,d in" ,time_holder_2 [i]) ;

fclose(fp) ;

printf ("finish\n") ;

exit(1) ;

}

* this function sends a message over the specified socket.

the message is the characters specified in the

definition of PLAC (currenzly"pla" followed by the

* integer array_mum. Upon reception the reader decodes

PLAC to realize that the following integer is the place

* in an array that must be incremented.

Arguments: Socknum, the integer number of the socket

, the message is to be transmitted over.

* array_hum: the number of the place in the

. destination net.

* token_val: the value of the token to be sent.

99

* Returns: i

* Requirements: socknum is an opened socket.
. **

int sock_send(socknum, array_num,token_va_l)

int socknum, a_ray_num,token_v_l;

<
int b_[9 + (sizeof JUNK)/sizeofCint)];

b_f[O] = (int) PLAC;

bu_ Ki] = _ray_num;

bull2] = token v_l;

buf[3] = (int) DATA;

bur [4] = sizeof JUNK;

strcpy (&bur [5], JUNK) ;

if (write (socknum, (char *) buf, 5*sizeofCint)+ sizeof JUNK)

< O)

perror("client :write :") ;

return(l);

}

* This function should be called with a call like:

send_tape(socket_number, command_nun, tape_cmndl,

J tape_cmnd2, tape_cmnd3, NULL) ;

* to send those three tape commands over the socket socket_number

For some clarification see varargs(3), which will

* clarify the variable number of arEuments...

Arguments: socket_number is the number of the socket.

* command_nun is one of the enum type

tape commands described in pet.h

* tape_cmnd., are one of the enum type

tape commands described in pet.h.

* Keturns : nothing

, Requirements: var_args.h, socket_number is an open socket.

void send_tape (va_alist)

va_dcl

va_list pointer;

int bur[SIZE_MENU+9 + (sizeof JUNK)/sizeof(int)] ;

I00

int sock_num, tape_cmnd, command_count=O,command_num;

va_start (pointer) ;

sock_hum = va_arg(pointer,int) ;

command_hum = va_arg(pointer,int) ;

while ((Zape_cmnd=va_arg(pointer, int)) != NULL)

{

bur[l+ ++command_count] = tape_cmnd;

}

bur [0] = command_hum;

bur [i] = command_count ;

if (command_count > SIZE MENU) printf("to many commands,

sending anyway, but fix this, or you'll get

a segmentation fault nert time \n");

bur[command_count + 2] = (int) DATA;

bur [command_count + 3] = sizeof JUNK;

strcpy (_buf[command_count + 4], JUNK);

if (write (sock_Rum, (char ") buf, (command_count +

4)*sizeof(int)

+sizeof JUNK) < O)

perror("client:write:");

va_end(poinzer);

, A predicate which determines if a transition is enabled,

* returning either tr_e or false.

* Arguments: _ran: a pointer to a transition.

. Returns: FALSE/ value of the legltimate token.

" No_e: _his is a bug: one can't have 0 (== FALSE)

as a token value.

Requirements: all the normal data structures.

int transition_enabled_p (trans)

struc_ transition ,trans;

{

struct pre_pointer ,next;

inz result = FALSE,carry_val,possible_value;

strucz enabelors ,allowed;

I01

struct place_contains *item;

if(trans->pre_places == NULL) return(FALSE) ;

if (instruct_in_menu_p(trans))

{

for(allowed = trans->enabled_by; allowed != NULL;

allowed = allowed->next_enabelor)

{

carry_val = T_UE;

for (nex_ = trans->pre_places; next != NULL;

next = next->next_place)

{

result : FALSE;

if (next->place != NULL)

{

for (item = next->place->place;item !=

NULL;item= item->next_contents)

{

if ((*next->decoloration_routine)(next->place->place->object)!=

allowed->enabelor)

{result = result II FALSE;}

else

{result = TRUE;}

}
}

carry_val = carry_val && result;

}

if (car_]_val) returu(allowed->enabelor) ;

if(allowed->next_enabelor == NULL) return (FALSE);

}

/.

* this next little loop covers the condition that there are no

enabelors

,/

for (nex_ = trans->pre_piaces; next != NULL;

next = next->next_place)

{

if (next->place->place == NULL)

{return(FALSE);}

else

{result =TKUE;

possible_value = _ext->place->place->object;

102

}

}

if (result) returu(possible_value);

else return (FALSE);

}
else

return (FALSE) ;

}
}

* A routine which "fires" a transition. Firing a transition

* consists of: Flashing the transition.

* removing one token (which must match the passed

* parameter "token") from each input place.

* adding one token to each output place.

* running the routine associated with the tramsiZion.

* Note _hat this routine should only be called if

* transition_enabled_p(trans) returned a value of TRUE.

* Arguments: trans: a pointer to a transition.

* token: the value of the legitimate token

* Zo be removed.

* Keturns: the integer value of the routine associated with

the transition

* Kequirements:

int fire_transition(trans,token)

int tokea;

struct transition _zrans;

{

struct pre_pointer *next;

struct post_pointer *nnext;

int return_cond;

if(graphics) flash_pl_r(trans - world) ;

next = Zra_s->pre_places;

while (nex_ != NULL)

103

{
if (remove_token((next->place - _place_ptr_array[O])

,token,trans,

nex_->decoloration_rou_ine) == F2J_K)

{

perror ("f ire_transit ion: remove_token :") ;

exit (0) ;

}
else

next= next->next_place ;

}

{

nnext = trans->post_places;

while (nnext != NULL)

if (! (nnext->remote)){

add_token((nnert->place - &place_pit_array [0]) ,

(,nnext->coloration_routine) (token)) ;

}
else if ((*nnext->data_trans_rout ine) (nnert->remote,

(nner_->place - _place_ptr_array[O])

, (,nnex_->coloration_routine) (token))

!= I)

{

perror("fire_transition :add_token(remote) :") ;

exit(0) ;
}

nnext= nnert->next_place ;

}
return_cond = (trans->routine) () ;

if ((trans->menu_requirements != NULL) an

trzns- >consumes_menu)

if (increment_menu_pit() == ER/_OK) {

printf("a_Zempting to increment menu pointer with

\n");
printf("head == tail in Y,s Exiting.. \n",title);

exit (I) ;

}

return (return_cond) ;

}

104

* A whole bunch of dummy routines which may be a=tached

* to the transitions.

* Arguments: none

Returns: Note: for these to match the rest of the code,

* all routines must return type int.

* Requirements: see returns

int dummy(){ return(I) ;}

A.7 petri.c

This cryptically named filehas the routines for calculating the offsets from the

other arcs when computing the routing of the arcs.

Ss

_s

_s

_t

NOTICE OF COPYRIGHT

Copyright (C) Rensselaer Polytechnic Institute.

1990 ALL RIGHTS RESERVED.

** Permission to use, distribute, and copy is granted ONLY

** for research purposes, provided that this notice is

** displayed and the author is acknowledged.

** This software is provided in the hope that it will be

** useful. BUT, in no event will the authors or Rensselaer

*. be liable for any damages whatsoever, including any lost

** profits, lost monies, business interruption, or other

*- special, incidental or consequential damages arising out

** of the use or inability to use (including but not

** limited to loss of data or data being rendered

** inaccurate or losses sustained by third parries or a

** failure of this software to operate) even if the user

** has been advised of the possibility of such damages, or

** for any claim by any other parry.

*- This software was developed at the facilities of _he

** Center for Intelligent Robotic Systems for Space

105

** Exploration, Troy, New York, thanks %0 generous project

** funding by NASA.

.s Package : TokenPasser

** File: petri.c

*_ Written By: Michael Mittmann

_s Date: 1/30/91

_ Purpose: The purpose of the package can be found in the file

*_ main. c.

.s This file contains routines to calculate %he offsets

*_ an arc should have from the other arcs.

** Modification History:

*/

#include <stdio .h>

#include "pltr. h"

• include "draw.h"

#define True 1

#define False 0

_define None (-1)

/* plZrtype pltr[MaxPiTr] ;

arctype arc [MaxArc] ;

int npltr, narc; */

/*

* This routine calculates the y offset within a row

* for an arc. (eg, i% might be in %he 4th row, which

* is a cm wide, and 6 mm from the top of it.

Ar_-oments: co11, co12, row, integers stateing the beginning

- and ending points of a segemnt of an arc.

_eturns: integer: the offset value

106

• Requirements:

xoff(coll, col2, row)

int co11, col2, row;

{
int i, off;

for(i=off=O; i < hare; off++)

for (i=O; i<narc; i+÷) {

if (arc[i] .used _ arc[i] .yl == row &&

overlap (toll, co12,

arcEi].xO, arcEi].x2)

_rc[i] .offl -- off)

break;

if (arc[i] .used _ arc[i] .yS == row &&

overlap(coll, co12,

arc[i].x2, arc[i].x4)

arc[i].off3 =- off)

break;

}
return off-l;

}

i This routine calculates the x offset within a column

for an arc. (eg, it might be in the %th column, which

* is a cm wide, and 6 mm from the left of it.

ArEuments: rowl, row2, col, integers stateing the beginning

, and ending points of a se_emnt of an arc.

Ke_urns: integer: the offset value

- KequiremenZs:

, "/

yoff(rowl, row2, col)

int rowl, row2, col;

{

int i, off;

for(i=off=O; i < hare; off++)

for(i=O; i<narc; i÷+) {

if (arc[i].used _ arc[i].xO == col &&

overlap(fowl, row2,

arc[i].yO, arc[i].yl) E_

I07

arc[i] .offO == off)

break;

if (arc [i] .used _ arc[i].x2 _fficol k&

overlap(rowl, row2,

arc[i] .yl, arc[i] .y3) #._

arc [i] .of_2 =ffi of_)
break;

if (arc[i].used _ arc[i].z4 == col _

overlap(row1, row2,

arc[i].y3, arc[i].y5)

arc[i] .off4 == off)

break;

}

return off- 1 ;

}

* A trivial boolean

* Arguments: all integers.

* Returns:true/false depending if a is between x and y or not

* Kequirements:

* ./

between(x, y, a)

{

return ((y >ffia _ a >ffix) I[(y <= a kk a <= x));

}

* ArgumenZs:

Returns:

* Kequirements:

,/
overlap(a, b, x, y)

int a, b, x, y;

{

retul-a (between(x, y, a) II betwee=(x, y, b) I I

(affx _& bf=y)][(affify kk bffx));

}

108

A.8 postn.c

This file contains the routine that actually calculates the routes for the arcs.

_m

_z

_cac

NOTICE OF CUPYRIGHT

Copyright (C) Kensselaer Polytechnic Institute.

1990 ALL RIGHTS KESEKVED.

** Permission to use, distribute, and copy is granted ONLY

** for research purposes, provided that this notice is

_* displayed and the author is ackmowledged.

** This software is provided in the hope that it will be

** useful. BUT, in no event will the authors or Kensselaer

*- be liable for any d_mages whatsoever, including any lost

*- profits, lost monies, business intex-/-_ption, or other

-* special, incidental or consequential daumages a.rising out

** of the use or inability to use (including but not

,* limited to loss of data or data being rendered

** inaccurate or losses sustained by _hird pa/-ties or a

** failure of this software to operate) even if the user

** has been advised of the possibility of such damages, or

** for any claim by any other party.

** This software was developed at the facilities of the

** Center for Intelligent Kobotic Systems for Space

_* Exploration, Troy, New York, thanks to generous project

** funding by NASA.

_Z

** Package: Token2asser

mt

** File:posZn.c

*- Written By: Michael Mittmann

_Z

** Date: 1/30/91

_Z

** Purpose: The purpose of the package ca_1 be fou/id in the file

** main.c.

** This file contains the routine that positions the arcs

** based on their star% and end points.

109

ss

• , Modification History:

ss

*/
_include <stdio.h>

_include "pltr.h"

• Ar_ruments: i the number of the arc to be positioned.

• Returns: nothing

Requirements:

void arc_postn(i)

int i;

{
int xfrom, yfrom, xto, _rto, from, to;

from = arc[i].src;

to = arc[i] .des_ ;

xfrom = plCr[from] .x;

yfrom = plCr [from] .y;

xto = pltr[Zo].x;

yto = pltr[to].y;

arc[i] .yO = yfrom;

arc[i].xO = xfrom;

arc[i].offO = yoff(arc[i].yO, arc[i].yl, arc[i].xO);

arc[i].yl = rfrom + 1;

if (xto < xfrom)

arc[i].x2 = xto + 1;

else if (xZo > xfrom)

arc[i].x2 = xi:o - I;

else if ((yfrom+2) =- y_o)

arc[i].x2 = xto;
else

II0

arc[i].z2 - zto - i;

arc[i].offl = xoff(arc[i].xO, arc[i].x2, arc[i].yl);

arc[i] .y3 = y_o - 1;

arc[i].off2 = yoff(arc[i].yl, arc[i].y3, arc[i].x2);

arc [i] .x4 = xto ;

arc[i].off3 = xoff(arc[i].x2, arc[i].x4, arc[i].y3);

arc[i].y5 = y_o;

arc[i].off4 = yoff (arc [i] .yb, arc[i].yb, arc[i].x4);

}

A.9 read_socket.c

This file contains the routine which reads the socket upon getting an interupt.

_s

NCT!CE OF COPYRIGHT

Copyright (C) Rensselaer Polytechnic Institute.

1990 ALL RIGHTS RESERVED.

** Permission to use, distribute, and copy is granted ONLY

** for research purposes, provided that this notice is

** displayed and the author is acknowledged.

_s

** This software is provided in the hope that it will be

.* useful. BUT, in no event will the authors or Rensselaer

.= be liable for any damages whatsoever, including any lost

** profits, lost monies, business interruption, or other

*= special, incidental or consequential damages arising out

** of the use or inability to use (including but not

** limited to loss of data or data being rendered

,, inaccurate or losses sustained by third parties or a

*_ failure of this software to operate) even if the user

*- has been advised of the possibility of such damages, or

** for any claim by any other par_y.

** This software was developed at the facilities of the

iii

*= Center for Intelligent Robotic Systems for Space

.s Exploration, Troy, New York, thanks to generous project

*= funding by NASA.

_s

,s Package: TokenPasser

_, File: read_socket.c

_ Written By: Michael Mittmann

*_ Date: 1/50/91

_= Purpose: The purpose of the package can be found in the file

_ main. c.

*_, This file contains a routine to read all of the sockets

*= available to a particular program, and deal with any

*= incomming data according to the established protocol.

*= Modification History:

*/

_include <stdio.h>

#include <signal.h>

_include "pet.h"

_include "dumb_dec.h"

ex_ ern int should_pause, graphics ;

ezZern int socket_arT[] ;

int io_came ;

el-tern char title[] ;

* This routine sets a boolean which is used by main()

whenever any_ching comes in over the socket.

Arguments: none

Re_urns: no_hing

Requirements: the interupt must be enabeled (this is

done in _he sock_star_() routines.

void io_interup=_handler() {

112

io_came - TRUE;

should_pause - FALSE;

>

* This routine reads the all of the sockets until they are

empty.

The routine looks long, but it just does the same thing

over and over. Basically:

. i =0;

while(i < number of sockets)

{

data = read(socket[i])

if(data == PLAC)

then the message says to add a token to a

place, deal with it.

else if(data -= ADD_TAPE_END)

then the message says to add somthing to

the end of the tape, deal with it.

else if(data *= ADD_TAPE_IMMEDIATE)

then the message says to add somthing to

the current position of the tape, deal with it.

else increment to the next socket.

}

* Arguments: number_of_sockets.

check.

* Returns: Nothing

Requirements: An open socket for each number_of_sockets

tells the routine how many to

,/

void do_handler(number_of_sockets){

int i=O ,j, array_num,type, command_number;

char data_by_e;

do_came = FALSE;

while (i < number_of_sockets){

if (read(sockeZ_arr[i], &command_number, sizeof(int)) < 0){

perror("reading stream message (first)");

exit(l);

}

else if (command_number == (inz) PLAC)

{

113

if (read(socket_arr[i], _array_num, sizeof(int)) < 0)<

perror("reading stream message(second)") ;

exit (1) ;

}

if (read(socket_art[i], _ype, sizeof(in_)) < 0){

perror("reading stream message(_hird)") ;

exit (i) ;

}

add.token(array_hum, type) ;

should_pause = FALSE;

i=O;

}

else if (command_number == (int) AD_TAPE_END)

{/* add stuff dealing with adding tape data...*/

/* note that commands to add stuff to the tape are

of the form:

AD_TAPE_END number_of_additions additionO

addition1

*/

if (read(socket art[i], &array_num, sizeof(int)) < 0){

perror("reading sZream message(fourth)") ;

exit (1) ;

}.
if(_urray_num > SIZE_MENU)

printf("Attempting to add to many _ape

commands \n") ;

for(j=O ;j<_rray_num ; j++)<

if (read(socket arr[i], &type, sizeof(imt)) <

o)<

perror ("reading s_ream

message(fifth) ") ;

exi_ (1) ;

}

if(add_menu_cmnd((enum tape_trend) _ype) ==

 oR)

printf("_ape add failed \n");

if (graphics) draw_tape_box(current__ail_of_tape() -I) ;

>

i = O;

}

else if (command_number == (int) AD_TAPE_IMMEDIATE)

{ /* add s_uff dealing with adding tape

data... -/

114

/* note tha_ corn, ands to add s_u_f to the tape

are

of the form:

AD_TAPE_ IMMEDIATE number_of_additions

addition5 addition% addition3

Note that they are in reverse order because the

insertion process switches the order.

*/

if (read(socket_arT[i], _array_num, sizeof(int)) < 0){

perror("reading stream messa_e(four_h)") ;

exit (I) ;

}

if(array_aura > SIZE_MENU)

printf("Attempting =o add to many tape

commands \n") ;

for (j =0 ;j <array_num; j+÷) {

if (read(socket_art[i], &type, sizeof(int)) <

0){

perror ("reading stream

message(fifth) ") ;

exit(1) ;

}

if (insert_menu_cmnd_immediat e ((ChUm _ape_cmnd)

type)
n ERROR)

printf("tape add failed \n");

if (graphics)

draw__ ape_box (current_head_of_tape ()) ;

}

i=O;

}

else if (command_number == (int) DATA)

{

if (read(socket_art[i], aarray.num, sizeof(int)) < 0){

perror("readin_ stream message (eig_h)") ;

exit (I) ;

}

for (j=O ;j <array_hum ;j++) {

if (read(socket_art[i], &data_byte, sizeof(char)) <0){

perror("reading stream (ninth)");

exit(1) ;

}

115

/* this is where a routine doing something with */

/_ the data would be. */

)

i=O;

}
else i++;

command_number = 0;

)

should_pause = FALSE;

>

A.IO sock..connect.c

This filehandles connecting to already existing sockets.

NOTICE OF COPYRIGHT

Copyright (C) Rensselaer Polytechnic Institute.

1990 ALL RIGHTS RESERVED.

.s Permission to use, distribute, and copy is granted ONLY

*_ for research purposes, provided tha_ this notice is

** displayed and =he author is acknowledged.

** This software is provided in the hope that it will be

*_ useful. BUT, in no event will the authors or Rensselaer

.i be liable for any damages whatsoever, including any lost

-= profits, losZ monies, business interruption, or other

*_ special, incidental or consequential damages arising out

=* of the use or inability to use (including but not

.I limited to loss of data or data being rendered

*- inaccurate or losses sustained by third parties or a

*_ failure of this software to opera_e) even if the user

*- has been advised of =he possibili_y of such damages, or

-_ for any claim by any other party.

s_

*" This software was developed at the facilities of the

** Center for Intelligent Robotic Systems for Space

*_ Exploration, Troy, New York, thanks to generous project

*= funding by NASA.

*= Package: TokenPasser

116

*_' File: sock_cozm.ect.c

** Written By: Michael Mittmann

** Date: 1/30/91

** Purpose: The purpose of the package can be found in the file

** main. c.

** This file contains a routine to connect to the specified

** pre-existing socket(s)

** Modification History:

*/

_include <sys/types.h>

#include <sys/socket .h>

include <net inet/in, h>

_include <netdb. h>

_include <stdio .h>

_include <fcntl .h>

#include <sys/uio. h>

_include <errno .h>

_include <sisal.h>

_include "pet.h"

#include "dumb_dec.h"

#define NUM_INFO_PER_SOCK 2

/* This program creates a client process

on a socket by asking for a connection */

int socket_arr [LOCAL_SOCKS] ;

extern sZrucZ place_pit place_ptr_array[] ;

* This routine connects to the sockets specified in the

command line argument. The socklets are marked as

* Asynchronous, non-blocking sockets.

* Arguments: argv, argc. arEv is an array of character

* strings. Since the command line for any module which

uses sock_connect is

I17

* <cmnd><location><number> [<location><number>] [-fast]

* the locations and numbers are read from that array

* and used by the routine.

= Returns : Nothing

= Requirements: This must be called after the sockets are

opened. (not much of a problem, as you don't have

enough information %o call this until the socket is

= opened.

./

void sock_star_ (argc,arEv)

int argc;

char *argv [] ;

{

int sock_mum [LOCAL_SSCKS], i ;

struc% sockaddr_in server;

struc% hosten% *hp, *gethostbyname() ;

if ((argc < NUM_INFO_PER_SOCK*LOCAL_SOCKS +1) 11 (argc>

NUM_ INF0_PER_SOCK=

LOCAL_SOCKS +2)){

fprintf (stderr, "The number of local sockets (in pet.h) does

not\n") ;

fprin%f (stderr, "match the number given implicitly in the

command\n") ;

fprintf (stderr, "Local socks = _,d, you should give the host

name \n") ;

fprintf (stderr, "and socket number for each socke=\n");

exit(l) ;

}

/= =his is =he line which tells the interupts where to go... =/

signal (SIGI0, io_interupt_handler) ;

for (it0 ;i<LOCAL_SOCKS ;i++) {

sock_nun[i] = atoi(argv[2+NUM_!NF0_PER_SOCK*i]) ;

if ((socket_art[i] = socket(AF_INET,SSCK_STKEAM,0))<0){

perror("client:open:"); exit(l);}

server, sin_family = AF_INET;

hp = gethostbyname(argv[NUM_INF0_PEK_SSCK * i+l]);

if (hp == O) {

fprintf (stderr , "Y.s: unknown host",

arEv[NUM_INFG_PEK_SOCK * i÷1]);

118

exit (2);
}

bcopy((char *)hp->h_addr,(char

*)&server.sin_addr,hp->h_len_h);

server.sin_port - h_ons(sock_num[i]);

if (connect(socked_art[i], (s_ruc_ sockaddr *)&server,

sizeof server) <0) {

perror ("clienl_ :connec_ :") ;

ezit(I);
}

printf("opened socket to _s _d = Y,d \n ",

argv[NUM_INFO_PER_SQCK * i+1] , sock_hum[i] ,socket_arr[i]) ;

if (fcutl (socket_art [i] ,F_SETDWN, getpid())<0) {

perror("fcntl F_SEIDWN, :") ;

exit (1) ;

}

if (fcntl (socket_arT [i] ,F_SETFL, FASYNC IFNBI0) <0) {

perror("fcntl F_SETFL, FNBI01FASYNC") ;

exit(I);
}
}

}

A.11 sock_open.c

This routine opens up sockets for sock_connect to connect to.

NOTICE OF COPYRIGHT

Copyright (C) Rensselaer Polytechnic Institute.

1990 ALL RIGHTS RESERVED.

** Permission to use, distribute, and copy is granted ONLY

** for research purposes, provided that this notice is

** displayed and the author is ackaowledged.

*- This software is provided in the hope that i_ will be

** useful. BUT, in no event will the authors or Rensselaer

,- be liable for any damages whatsoever, including any lost

*_ profits, lost monies, business interruption, or other

119

•- special, incidental or consequential damages arising out

•_ of the use or inability to use (including but not

• _ limited to loss of data or data being rendered

• * inaccurate or losses sustained by third par_ies or a

• - failure of this software to operate) even if the user

•_ has been advised of the possibility of such damages, or

•* for any claim by any other par_y.

•. This software was developed at the facilities of the

•- Center for Intelligent Robotic Systems for Space

• . Exploration, Troy, New York, thanks to generous project

• i funding by NASA.

•i Package: TokenPasser

•. File: sock_open.c

•. Written By: Michael Mittmann

•* Date: 1/30/91

•* Purpose: The pu/_pose of the package can be found in the file

•- main. c.

•- This file contains a routine to open to the specified

• * socke_ (s)

• * ModificaZion History:

,/

_include <sys/types .h>

#include <sys/socket. h>

#include <netinet/in.h>

#include <ne_db .h>

_include <s_dio .h>

_include <fcnZl .h>

_include <errno .h>

#include <signal. h>

#include "peZ .h"

_include "dumb_dec .h"

/* This program se_s up a server (conneczion

receiver) to lisZen for a message on a sockeZ.

When iZ receives a message, iZ displays the

120

message on stdout, sends the same message back

to the sender, and exits */

/* This program is called by main2

It sets up some sockets and writes their addresses out to

scree_

*/

ex_ern int place O ;

int socket_arr[MAIN_SOCKS];

the

This routine opens MAIN_SOCKS sockets.

* The socklets are marked as Asynchronous, non-blocking

sockets.

Arguments: none. (argv and argc are ignored, they are

there so this routine looks like sock_connect.

Returns: Nothing

Requirements: none

*/

void sock_star_ (argc, argv)

int argc; /* these are to make this program */

char *argv[] ; /* comparable with sock_start in

sock_connect, c _/

{

int ns [MAIN_SOCKS] ,i, sock_nums [MAIN_SOCKS] ,stringlen;

int j ,connections_need_to_be_made,

need_to_connect_to [MAIN_SOCKS] ;

struct sockaddr_in sock_name[MAIN_SOCKS] ;

/_ specify the name of the routine that handles SIGI0 interupts _/

signal (SIGI0, io_interupt_handler);

/* Set the permission so that %he SIGI0/SIGURG interupts can be

sent

set up listening sockets, and allow receipt of asynchronous I/0

* signals

*/

for (i=O;i<MAIN_SOCKS;i++){

if((ns[i] = socket(AF_INET,SOCK_STREAM, 0))<0){

perror("server:socket:opening error:");

exit(l);

121

}

if (fcntl(ns[i] ,F_SETFL, FNBIO)<O){

perror("fcu%l F_SETFL, FNBIO") ;

exit (1) ;

}
}

/* Name the socket using wildcards =/

for (i=O ;i<MAIN_SOCKS ;i++) {

sock_name [i] .sin_family = AF_INET ;

sock_name [i] .sin_addr, s_addr = INADDR_ANY;

sock_name[i] .sin_port = O;

if (bind(ns [i] ,(struc% sockaddr *)&sock_name [i], sizeof

sock_name [i])==-1){

perror (" server: bind") ;

exit (I) ;

}

sZringlen = sizeof sock_name[i];

if (get sockname (ns [i] ,(struct sockaddr *) Rsock_name [i] ,

&stringlen) <0) {

perror("getting socket name:");

exit(I);
}

sock_hUmS [i] = ntohs(sock_name [i] .sin_port) ;

printf ("socket port _,d has opened \n",

ntohs (sock_name [i] .sin_port)) ;

}

for (i=O ;i<MAIN_SOCKS ;i++)

listen(ns [i] ,3) ;

/* accept connection request */

/_ these should be marked as non-blocking, and go through, and

attempt %o

accept until all of the connections are accepted. Note that

the hassle

of dealing with non-blocking sockets is so that we don't have

to connect

* in order.

*/

for (i=O;i<MAIN_SOCKS;i++)

122

need_to_connect_to[i] = TRUE;

connections_need_to_be_made = TRUE;

while (connections_need_to_be_made) {

for (i=O ;i<MAIN_SOCKS ;i++) {

if (need_to_connect_to [i]){

socket_art[i] = accept(ns[i],(struct sockaddr =)0, (int

.)o) ;

if ((socket_art[i] < 0)_Jk (errno != EWOULDBLOCK))

perror (" server: accept") ;

else if (errno !_ EWOULDBLOCK){

printf ("connect ion opened\n") ;

need_to_connect_to [i] = FALSE;

if (fcntl(socket_arr[i] ,F_SETOWN, getpid())<0){

perror("fcntl F_SETOWN, :") ;

exit (I) ;

}

if (fcntl (socket_ art [i], F_SETFL, FASYNC IFNBIO) <0) {

perror("fcutl F_SETFL, FASYNC");

exit(I);
}

connec%ions_need_to_be_made = FALSE;

for (js0 ;j<MAIN_SOCKS ;j++)

connections_need_to_be_made I =

need_to_connect_to [j] ;

}

}
}

A.12 transform.c

This routine translates from the default data structure to one which the draw-

ing routines use.

NOTICE OF COPYRIGHT

Copyright (C) Rensselaer Polytechnic Institute.

1990 ALL RIGHTS RESERVED.

• m Permission to use, distribute, and copy is granted ONLY

•* for research purposes, provided that this notice is

123

,' displayed and the author is acknowledged.

.8 This software is provided in the hope that it will be

• s useful. BUT, in no event will the authors or Rensselaer

• s be liable for any damages whatsoever, including any lost

.. profits, lost monies, business interruption, or other

•= special, incidental or consequential damages arising out

•_ of the use or inability to use (including but not

.z limited to loss of data or data being rendered

.. inaccurate or losses sustained by third par_ies or a

•= failure of this software to operate) even if the user

•- has been advised of the possibility of such damages, or

•1 for any claim by any other par_y.

•s This software was developed at the facilities of the

•* Center for Intelligent Robotic Systems for Space

•* Exploration, Troy, New York, thanks to generous project

•* funding by NASA.

_i Package: TokenPasser

.= File: transform.c

•= Written By: Michael Mittmann

_s

•* Date: 1/30/91

.1 Purpose: The purpose of the package can be found in the file

•* main. c.

• * This file contains routines to transform the the data

•* to the pltr data structures. This is needed because

•* drawing routines use the pltr data structures, and

•= the firing routines use the other data structures.

• z This should probably be modified, but "if it ain't

•* broke don't fix it".

•* Modification History:

*/

#include "pltr. h"

#include "pet.h"

#include "dumb_dec.h"

124

#define MAX_PLACES 70 /- note, this number is likely to be */

/* one of the things givin 6 you */

/* trouble when you remake the nets */

ertern struct place_ptr place_pit_array[I;

ex_ern int hum_transitions;

* fill_pltr_arc_map (world)

* This routine takes the set of data structures defined in

* world and fills the pltr data structures, so that the

* graphics package can be used.

* quick pseudocode:

* for each transition:

* put that transition on the pltr list.

* for each preplace of that transition

* if that place has not yet been put into the pltr list

* put it in the list

* mark the connections betweeen the place and transition.

* put the arc between them on the arc list

s otherwise

* mark the connections between the place and the

transition.

* put the arc between them on the arc list

* for each postplace of that transition

* if that place has not yet been put into the pltr list

* put it in the list

* mark the connections betweeen the place and transition.

- put the arc between them on the arc list

* otherwise

* mark the connections between the place and the

transition.

* put the arc between them on the arc list

*Note, the pltr list is a list of all the places and

transitions.

* Argn_ments: world: an array of all the transitions.

* Returns : nothing

* Requirements: Note that this is called only after the other

, data structure is completed.

125

void fi11_plt r_arc_map (world)

s_ruct transition world[] ;

int arc_counter, i,place.num;

s_ruct pre_pointer _nert;

s_ruct post_pointer *nnex_;

arc_counter = O;

for (i--O ;i<num_transitions ;i++)

,I

if ((worldEi].pre_places != NULL) If

(world [i] .post_places !I _F6LL))

mark_tran(i ,world[i] .z_loc, world[i] .y_loc) ;

nex_ = world[i] .pre_places;

while (next != NULL)

if((place_num = already_listed_p(nert->place)) <0)

place_hum I -1*place_hum + num_transitions;

f ix_arc_po inter (i, place_hum, arc_counter, TRUE) ;

>
else

place_hum = place_hum + hum_transitions;

mark_place(place_hum, arc_counter, TRUE,

nex_->place->x_loc, nex_->place->y_loc) ;

mark_arc (i, place_hum, arc_counter, TRUE) ;

>

arc_counter++ ;

next = next->next_place;

>

nnext = world[i] .post_places;

while (nnez_ != NULL)

if((place_mum = already_listed_p(nnext->place)) <0)

place_mum I -1*place_hum + hum_transitions;

fix_arc_pointer(i,place_num, arc_counter,FALSE) ;

>
else

place_hum = place_hum + hum_transitions;

mark_place(place_hum, arc_counter, FALSE,

nnext->place->z_loc, nnext->place->y_loc) ;

/_ for each transition

126

mark_arc(i,place_num, arc_counter,FALSE) ;

}

arc_count er++ ;

nnext = nnex_->next_place;

}
}

}

* database, if it has then this returns -1- it's location.

Otherwise it returns its hey location.

Ar_ments: canidate_place. A pointer to the place being

checked.

Returns: A number (place in in the pltr array) for that

place. (if the number is negitive the place has

* already been located.

Requirements :

checks to see if the place has already been added to the

../

int already_lisZed_p(canidate_place)

struc_ place_pZr *canidate_place;

{

static int place_markers[MAX_PLACES] = {0};

int i;

i = canidate_place - &(place_pZr_array[O]);

if (place_markers[i]) return (-I * i) ;

else place_markers [i] = T_UE;

return (i) ;

}

* this deals with changing all of the data if a new arc

* is to be added to a place which was already declared.

* Specifically, a place in the arc array must be set

aside, and the linkled lists of arcs in the pltr lists

must have the new arc added.

Arguments: zran_num, place_hum, arc_hum: the number in

, their respective arrays of the transition, place,

127

* and arc.
i pre: a boolean, true if the place is a

* pre-place to the transition.

, Returns: nothing

* Requirements :

void fix_arc_poin_er(tran_num, place.hum, arc_hum, pre)

int tran_num, place_hum, arc_hum, pre;

/1 note pre is a boolean indicatingl/

/1 if the place is a pre-place or el/

/1 post-place i/

{
int base_arc,

arc [arc_mum] .srcnext -- NullArc ;

arc [arc_mum] .destnex_ -- NullArc;

if (pre) {

if (pltr[place_num] .out =-- NullArc){

pltr [place_mum]. out = arc_mum;

arcEarc_num] .src = place_hum;

arc [arc_mum] .desk = _ran_num;

}
else{

base_arc = plCr[place_num] .out ;

while (arc[base_arc] .srcnex_ != NullArc)

{ base_arc = arc [base_arc] .srcnex_ ;}

arc [base_arc] .srcnext = arc_hum;

arc [arc_hum] .src = place_hum;

arc[arc_hum] .deer = tran_num;

}

fix_tran_input_arcs (tram_mum, arc_mum) ;

}

else{

if (pltr[place_num] .in == NullArc) {

pltr[place_num] . in = arc_mum;

arc [arc_mum] .deer = place_mum ;

arc [arc_hum] .src = tran_num ;

}
else{

base_arc = plzr[place_num] .in;

while (arc [base_arc] .destnexz !-- NullArc)

{ base_arc = arc [base_arc] .desZnexz;}

128

arc[base_arc] .destnex't - arC_hUm;
arc [arc_hum] .des_ = place_hum;
arc [arc_hum]. src - _ran_num;

}

fix__ran_ouCput_arcs(Zran_num, arc_Rum) ;

}

arc[arc_hum].used = TRUE;

arc [arc_num] .srcnexZ - NullArc ;

arc [arc_hum]. desCnext = NullArc ;

• this routine fixes the pointers associated with the

• transitions which have arcs leading into them.

(that is, this routine is called when we're adding the

arc arc_hum to tran_num's list of arcs which input to

it.

Arguments: tran_num, arc_hum, the array number of the

• transition and arc.

Returns : no_hing

Requirements :

-,/

void fix_tran_input_arcs(tran_num, arc_hum)

int tran_num, arC_hum;

{

int base_arc ;

if (pltr[Zran_Rum] .in == NullArc){

pl_r[tran__um] .in = arc_hum;}

else{

base_arc = pltr[tran_num] .in;

while (arc [base_arc] .destnext != NullArc)

base_arc = arc [base_arc] .destnext ;

arc [base_arc] .destnext = arc_hum;

}

}

* this routine fixes the pointers associated with the

transitions which have arcs leading out of them.

* (that is, this routine is called when we're adding the

, arc arc_num to tran_num's list of arcs which output

129

* from it.

* ArEuments: tram_hum, arc_hum, the array number of the

* transition and arc.

Returns : nothing

RequiremenTs :

./

void fix_tran_output_arcs(tran_mum, arc_hum)

int tran_num, arc_hum;

{

int base_arc ;

if (pltr[tran_num] .out == NullArc) {

plTr[tran_num] .out = arc_hum; }

else{

base_arc = pltr[tran_num] .out ;

while (arc [base_arc] .srcnex% != NullArc)

{ base_arc = arc[base_arc] .srcnext ;}

arc [base_arc] .srcnext = arc_hum;

}

}

/*

= this routine records a place in the data structure the

first time it is encountered.

* Arguments: (sigh, isn't this obvious by now?)

* place_num, arc_hum: the array number of the relevent things

* x_loc, y_loc, _he desired screen locations.

= pre_place: boolean, true if pre-place reliTive _o

* the current transition when this place was "discovered"

* Returns: Nothing, nada, zip.

- Kequirements:

void mark_place(place_hum, arC_hUm, pre_place,x_loc, y_loc)

int place_hum, arc_hum, pre_place; /* note pre is a boolean */

in% x_loc, y_loc; /*indicating if the place is a pre--/

/*place or a post-place ./

{

if (pre_place) {pltr[place_num].out = arC_hUm;

pltr[place_num].in = NulIArc;}

else {pltr[place_num] .in = arc_hum;

pltr[place_num] .out = NullArc ;}

pltr[place_num] .place = TRUE;

130

pltr[place_num] .used - TRUE;

pltr[place_num] .type - PlState;

pltr [place_hum]. tok - 0 ;

pltr [place_hum] .x = x_ioc ;

pltr [place_mum] .y = y_ioc ;

This fills the data structure for an arc associated with

* a place the first time that that place is encountered...

* Arguments: tran_num, arc_mum, place_hum:

* the array locations of the relevent objects.

* pre: boolean, true if place is input to transition

Returns : nothing.

Kequirement s :

void mark_arc(tran_mum, place_mum, arc_hum, pre)

int tran_mum, place_mum, arc_hum, pre;

/* mote pre is a boolean indicating-/

/* if the place is a pre-place or a./

/* post-place _/

arc Carc_mum]. used = Tl_.b7_;

arc Carc_n1_m] . srcnexZ =, NullArc ;

arc Carc_mum] .des_next = NullArc;

if (pre) {
arc Carc_num] .src : place_mum;

arc [arc_mum] .des1_ : tra21_mum;

fix_tran_input_arcs (tran_mum, arc_mum) ;

}

else{

arc Carc_mum] .dest = place_mum;

arc Carc_num] .src = tran_mum;

fix_tran_output_arcs(tran_num, arc_hum) ;

}

}

* this routine initializes a transition

Arguments: tran_num: the number of the transition?

* x_Ioc, y_Ioc: location of the transition

131

* Returns:nothing

* Requirements:

,/

void mark_tran(tran_num,x_loc, y_loc)

int tran_num,x_loc, y_loc;

{

pltrEtran_num] .place = FALSE;

pltr[tran_num] .used = TRUE;

pltr[tran_num] .type = PIEvent;

pltrFtran_num].tok = O; /* fix this!!!!! ! */

pltr[tran_num] .x = x_loc;

pltr[tran_num] .y = y_Io¢;

pltr[zraa_num], in = NullArc ;

pltr [tran_num] .out = NullArc ;

* removes a token from the pltr representation of place

* place_num.

* note the relitve len_hs of documentation and code.

* Ar_mments: place number

Returns:nothing.

Requirements:

./
void remove_tok_in.pltr_rep(place_num)

int place_hum;

{

pltr [place_hum + hum_transitions] .tok-- ;

}

* adds a token to the pltr representation of place

* place_num.

* note the relitve lengths of documentation and code.

* Arguments: place number

* Keturns:nothing.

* Kequirements:

void add_tok_in_pltr_rep(place_num)

int place_hum;

132

{

pltr [place_aura + hum_transitions] .tok÷+;

}

A.13 window..manaKer.c

This routine opens and moniters the window.

_S NOTICE OF COPYRIGHT

Copyright (C) Rensselaer Polytechnic Institute.

1990 ALL RIGHTS RESERVED.

** Permission to use, distribute, and copy is granted ONLY

** for research purposes, provided That this notice is

** displayed and the author is acknowledged.

** This software is provided in the hope that it will be

=* useful. BUT, in no event will the authors or Rensselaer

** be liable for any damages whatsoever, including any los_

_- profits, losZ monies, business interrnlption, or other

= special, incidental or consequential damages arising ou

._ of the use or inability to use (including but not

_* limited to loss of data or data being rendered

*= inaccurate or losses sustained by Third par_ies or a

I. failure of this software to operate) even if the user

11 has been advised of the possibillty of such damages, or

** for any claim by any other par_y.

Z_

** This software was developed at The facilities of the

,i Center for Intelligent Robotic Systems for Space

Iz Exploration, Troy, New York, thanks to generous pro3ect

_1 funding by NASA.

11

.1 Package: TokenPasser

11 File: window_manager

11 Written By: Michael Mittmann

11

11 Date: 1/30/91

133

** Purpose: The purpose of the package can be found in the file

*_ main. c.

*_ This file conta/ns a routine which moniters the window,

.. and updates it when needed. It also sends signals to

** it's child (the main routine) when the user gives

** instructions it's to senile to handle.

** This file also contains the routine which initially

** creates the window.

** As a final ingredient the file contains spare sauteed

** in the finest grease-ridden-carp grease, and due to

.s a special deal with Dahli-lama Expox-t/Import, 2

** drams of yak hair.

*= Modification History:

*/

#include "dumb_dec.h"

#include <signal.h>

#include <Xll/Xlib.h>

#include <X11/Xutil.h>

#define TRUE i

#define FALSE 0

extern char title[] ;

char fontname []=<"6x10"> ;

Display *display;

Window ne__window;

GC gc;

unsigned long foreground, background;

XEvent event;

Fon% font;

KeySym key;

XSizeHin%s hint;

int screen;

char rex%[!O];

* This routine creates the window.

134

* Ar_menZs: none

* Returns:none

* Requirements: Xli library?

./
void init_window(){

display = XOpenDisplay("");

screen I DefaultScreen(display);

background = WhitePixel (display, screen);

foreground = BlackPixel(display , screen);

font = XLoadFont(display,fontname);

hint.x =0; hint.It- O;

hint.widths350; hint.heigh_ = 250;

hint.flags = PPosition IPSize;

/* create window*/

net_window = XCrea_eSimpleWindow (display,

DefaultRootWindow(display),

hint.x, hint.y, hint.width, hint.height, 5,

foreground, background);

XSetStandardProper_ies (display, ne__vindow, title, title,

None,

0,0, &.hint);

/* GC initialization & creation ,/

gC = XCreateGC(display, net_window, 0,0);

XSetFont(display,gc,font);

XSetBackground(display, gc, background);

XSetForeground(display, gc, foreground);

/* input event selection */

XSelectInput (display, net_window, KeyPressMask[

ExposureMask);

}

/*

* _his routine is a nice little infinite loop which

* waits for _he user to move the window, or type something

* into it, or someone to put another window over it,

135

* or anything like that.

The routine sends messages to it's child by using the

- kill command (and the child never sends messages back,

isn't that just typical?) which is why the child's pid is

passed to the routine.

* Arglunents: pid. the pid of the process which needs to be

* notified to refresh the screen, or has to be killed

* when the user tells the progr_ua go end.

* Returns :Never.

Requirements:Xll stuff, and the child needs to know what to

* do with a SIGUSR1 signal.

event _re ading_ 1 oop (p id)

inZ pid;

<

int not _done = T_UE,i;

whileCnot_done)

{

XWindowEvent (display, net_window,

(long)KeyPressMasklExposureMask, _event);

switch(event.type)

{

case Expose:

while(XCheckWindowEvenZ (display, net_window,

(long)F.xposureMask, &even_))

{/_ empty all _he expose events from the buffer..-/}

/_ tell child To redraw screen -/

kill(pid,SIGUSR1);

break;

case MappingNotify:

XRefreshKeyboardMapping (&event);

break;

/, process keyboard input ./

case KeyPress:

i = XLookupString(&event, text, I0, _key, 0);

/_ quit ./

if (i==I _ Text[O]== 'q') not_done = FALSE;

136

/s _ell child _o redraw screen s/

if (i_1 &E _ex_[O]=- 'r') kill(pid,SIGUSR1);

break;

default :

prin_f("we fell through _he case s_a_ezen_ 7.s\n",_i_le);

break;

APPENDIX B

NET DESCKIPTIONS

B.1 setup_disp.c

This is the file describing the Dispatcher.

NUTICE fF COPYRIGHT

Copyright (C) Rensselaer Polytechnic Institute.

1990 ALL RIGHTS RESERVED.

** Permission to use, distribute, and copy is granted 0NLY

** for research purposes, provided that this notice is

** displayed and the author is acknowledged.

** This software is provided in the hope that it will be

*_ useful. BUT, in no event will the authors or _ensselaer

.. be liable for any daunages whatsoever, including any lost

** profits, lost monies, business interruption, or other

.. special, incidental or consequential damages arising out

** of the use or inability to use (inc!uding but not

** limited to loss of data or data being rendered

** inaccurate or losses sustained by third paz_ies or a

.1 failure of this software to operate) even if the user

** has been advised of the possibility of such damages, or

** for any claim by any other par_y.

** This software was developed at the facilities of the

** Center for Intelligent Robotic Systems for Space

** Exploration, Troy, New York, thanks to generous project

.. funding by NASA.

_z

** Package: TokenPasser

_z

** File: setup_disp.c

** Written By: Michael Mittmann

137

138

*" Date: 1/30/91

-- Purpose: The purpose of the packa6e can be found in the file

*- main.c.

*_ This file contains the net definition s_atements defining

*ffi the dispatcher.

.1 Modification History:

#include <varargs.h>

#include "pet.h °'

#include "pet2.h"

#include "dumb_dec.h"

#define NUM_TRANS 33

char title[] = {"Dispatcher"};

int number_of_sockets = MAIN_SOCKS;

int calibrate_menu(), look_menu(), grasp_menu(), release_menu(),

find_menu() ;

int continue_vision(), vision_task(), motion_task(), calr_menu(),

move_menu () ;

int approach_menu() ;

exZern int rec_time1(), rec_time2();

exzern int socket_art[];

int menu[SIZE_MENU] ;

int num_transitions = NUM_TRANS;

struc_ place_ptr place_ptr_array[70] ;

sZruc_ transition world[NUM_TRANS] ;

* make_net()

, this routine just defines a net identical to the one described

* in the GreatSPNi.5 file dispaZcher_w_all_connect.

. Arguments:none

- Keturns:nothing

Kequirements: just about all of the routines linked to it ;-)

,/

139

make_net ()

{
initialize_transition(calibrate_menu,TKAN world[O] ,4, 12) ;

add_pre_list (& (world [0] .pre_places), _place_ptr_array [30] ,

&place_ptr_array [423,

NULL) ;

add_post_list (& (world [0]. post_places), &place_ptr_ array [32], O,

&place_pit_array [16], socket_art [0], NULL) ;

initialize_transition(calibrate_menu ,TKAN world [I] ,6,12) ;

add_pre_lisZ (&(world [1] .pre_places) , _place_ptr_array [30],

&place_ptr_array [45] ,

aplace_ptr_array [39] ,NULL) ;

add_post_list (& (world[l] .post_places), &place_ptr_array [34] ,0,

&place_pit_array [16], socket_err [0] ,NULL) ;

initialize_transition(vision_task,TRAN world[2] ,8,12) ;

add_pre_list (& (world [2] .pre_places), _place_ptr_array [30],

&p I ace_pt r _art ay [44] ,

&place_pit_array [38] ,NULL) ;

add_posZ_list(&(world[2] .post_places), &place_ptr_array[35] ,0,

&place_ptr_array [16] ,socket_arr [0] ,NULL) ;

initialize_transition(vision__ask,TKAN world[3] ,I0,12) ;

add_pre_list (& fworld [3] .pre_places) , _place_ptr_array [30] ,

&place_ptr_arr_y [33],

NULL) ;

add_post_list (&(world[3] .post_places), aplace_ptr_array [36] ,O,

&place_pit_array [16] ,socke__arr [0] ,NULL) ;

initialize_transition(vision_task,TRAN wor!d[4] ,12,12) ;

add_pre_list (a (world [4] .pre_places) , aplace_ptr_array [30],

&place_pit_array [38] ,

&place_ptr array [45] ,NULL) ;

add_post_list (a (world [4] .po st_places) , aplace_ptr_array [37] ,O,

&place_ptr_array [16], socket_err [0] ,NULL) ;

initialize_transition(rec_t ime2 ,TKAN world [5] ,0,0) ;

initialize_transi_ion(rec_=ime2,TKAN world[6] ,4,22) ;

add_pre_list (a (world [6] .pre_places) , aplace_ptr_array [3I] ,

140

&place_ptr_array [32],

NULL) ;

add_post_list (_(world [6].post_places), &place_ptr_array [33], 0,

_place_ptr_array [20] ,socket_arr [0] ,NULL) ;

initialize_transition(rec_time2 ,TRAN world(7] ,6,22) ;

add_pre_lisZ (& (world [7] .pro_places), E_place_ptr_array [31],

•place_ptr_ array [34] ,

NULL) ;

add_po st_li st (& (world [7] .post_places), &place_ptr_ array [33] ,0,

&place_ptr_array [20] ,socket_arr [0] ,NULL) ;

iniZialize_transition(rec_time2 ,TRAN world [8] ,8,22) ;

add_pro_list (_(world[8] .pro_places) , _place_ptr_array [31] ,

&place_ptr_array [35] ,

NULL);
add_posZ_list (_ (world [8] .posZ_places), &place_pZr_array [33] ,0,

&place_ptr_array [20] ,socket_arr [0] ,NULL) ;

znitialize_transiZion(rec_time2 ,TRAN world [9], I0,22) ;

add_pro_list (& (world [9] .pro_places) , E-place_ptr_array [31] ,

&place_pit_array [36],

Nb-LL) ;

add_post_li st (& (world [9]. post_places), &place_ptr_array [33] ,0,

&place_ptr_array [20] ,socket_art [0], NULL) ;

InlZialize_Zransition(rec_Zime2 ,TRAN world [I0], 12,22) ;

add_prs_list (_ (world [I0] .pro_places) ,&place_pZr_array [3I] ,

&place_ptr_array [37] ,

NULL) ;

add_post_list (_(world[10] .post_places) , aplace_ptr_array [33] ,0,

&place_pZr_array [20] ,sockez_arr [0] ,NULL) ;

initialize_transition(motion_task ,TRAN world(Ill ,22,2) ;

add_pre_!ist (& (world [I I] .pro_places) ,aplace_ptr_array [40] ,

aplace_ptr_ array [46] ,

NULL) ;

add_posz_li st (a (world [1I]. post_places), aplace_pZr array [41], O,

aplace pzr array [5] ,sockeZ_arr [!] ,NULL) ;

iniZialize_transiZion(rec_Z ime2 ,TKAN world [12], 22,6) ;

add_pro_list (& (world [12] .pro_places) ,&place_pzr_array [41] ,

apl ace_pZ r_ array [48] ,

141

NULL);
add_post_list (&(world[12] .post_places), _place_ptr_array [42], 0,

_q_lace_ptr_array [9], socket_art [I] ,NULL);

Initialize_transition(motion_task ,TKAN world[13] ,22,10) ;

add_pre_lis_ (& (world [13]. pre_places) ,&place_ptr_array [42] ,

&place_ptr_array [46],

NVLL);

add_post_list (&(world[13] .post_places) , &place_ptr_array [43] ,0,

•place_ptr_array[5], socket_arr [i] ,NULL) ;

init ialize_trans it ion(rec_t ime2,TKAN world [14], 22,14) ;

add_pre_list (& (world [14] .pre_places),&place_ptr_array [43] ,

&place_ptr_array [48] ,

NULL);

add_post_list (& (world[14] .post_places), _p!ace_ptr_array [59] ,0,

•place_ptr_array [44] ,0, _place_ptr_array [9] ,socket _art [I], NULL) ;

initialize_transition(motion_task, TRAN world[15] ,28,16) ;

add_pre_list (& (world [15] .pre_places) ,&place_ptr_array [59] ,

&place_pt r_a/ray [46] ,

NULL);

add_post_list (&(world[15] .post_places), _place_ptr_array [50], 0,

_place_ptr_a/Tay [5] ,socket_art [I] ,NULL) ;

initialize_transition(motion_task ,TRAN world [16] ,28,18) ;

add_pre_list (& (world [16] .pre_places) ,&place_ptr_array [44] ,

aplace_ptr_array [46] ,

NULL);

add_post list (a(world[16] .post.places), aplace_ptr array [51], O,

aplace_ptr_array [5], socket°arr [I] ,NULL) ;

initialize_transition(motion_task ,TKAN world [17], 28,20) ;

add_pre_list (_ (world [17] .pre_places) ,&place_pt r_array [33] ,

apiace_ptr_array [46] ,

NULL) ;

add_post_list (a(world[I?] .post_places) , aplace_ptr_array [52] ,0,

aplace_pt r_array [5], socket_art [I] ,NULL) ;

ini_ialize_trans ition(sotion_task,TKAN world [18] ,28,24) ;

add_pre_list (_ (world [18] .pre_places) ,_place_ptr_array [45] ,

_place_ptr_array [46] ,

NULL) ;

142

add_post_list (& (world [18] .post_places), _lace_ptr_array [53], 0,

&place_ptr_array [5], socke__arr [I] ,NULL) ;

ini_ialize_transition(rec_time2 ,TRAN world [19], 32,20) ;

add_pro_list (& (world [19]. pro_places), &place_pit_array [50] ,

_place_ptr_array [48],

NULL) ;

add_post_list (& (world [19] .post_places) , Eplace_ptr_ array [44], 0,

•place_ptr_array [9], socke__arr [I] ,NULL) ;

initialize_transiZion(rec_t ime2 ,TRAN world [20], 32,22) ;

add_pre_l ist (& (world [20]. pro_places), &plac e_p_r_array [513,

&place_ptr_a/ray [48] ,

NULL) ;

add.post_list (_(world[20] .post_places), _place_ptr_array [44], O,

&place_pit_array [9] ,sockeZ_arr [1] ,NULL) ;

init ialize__ransition(rec_Zime2 ,TRAN world [21], 32,24) ;

add_pre_lisZ (& (world [21]. pro_places) ,&place_ptr_array [52],

&place_ptr_array [48] ,

NULL) ;

add_post_list (&(world [21] .post_places), _place_ptr_array [44], 0,

kplace_pZr_array [38] ,0 ,_place_pzr_array [9] ,socket_art [1], NULL) ;

initialize_transition(rec_time2,TKAN world[22] ,32,28) ;

add_pre_lisZ (& (world [22] .pro_places) ,&place_ptr_array [53] ,

Eplace_pZr_array [48] ,

_q/LL) ;

add_posZ_!is_ (&(world [22] .pose_places), _place_ptr_array [45] ,0,

&place_ptr_array [9] ,socke=_arr [!] ,NULL) ;

iniZialize_%ransiZion(grasp_menu,TRAN world [23] ,14,28) ;

add_pre_ 1 is% (& (world [23] .pro_places) ,_place_ptr_array [44] ,

aplace_ptr_array [54] ,

_X/LL) ;

add_posZ_list (& (world [23] .posZ_places), _place_pZr_array [56], 0,

aplace_pzr_array [0] ,sockeZ_arr [2] ,NULL) ;

IniZialize_ZransiZion(release_menu, TKAN world [24], 18,28) ;

add_pre_lisZ (& (world [24] .pro_places) ,aplace_pt r_array [45] ,

&plac e_pt r_ array [54] ,

• JLL) ;

add_post_li sz (_ (world [24] .posZ_places), _place_ptr_array [57], O,

143

_place_ptr_array [0], socket_art [2] ,NULL) ;

init ialize__rans i_ion(grasp_menu, TRAN world [25], 22,28) ;

add_pre_l isZ (& (world [25]. pre_places), _place_p_r_array [593,

• pl ace_p_ r_ array [54] ,

NULL) ;

add_post_list (_(world[25] .post_places), _place_ptr_array [58], 0,

_place_p_r_array [0] ,socket_art [2] ,NULL) ;

ini_ialize_Zransition(rec__ime2 ,TRAN world [26], 14,32) ;

add_pre_list (& (world [26] .pre_places) ,&place_ptr_array [56] ,

Eplace_ptr_array [55] ,

ran.L) ;
add_po st_list (& (world [26] .post_places), _place_ptr_array [45], 0,

_place_pZr_array [4] ,socket_art [2] ,NULL) ;

initialize_Zransition(rec_zime2 ,TRAN world [27], 18,32) ;

add_pre_lisZ (& (world [27] .pre_places), _place_ptr_array [57] ,

&piace_ptr_array [55] ,

NULL) ;

add_posZ_li st (& (world [27] .post_places), _place_pZr_array [59], 0,

&place_ptr_array [4] ,socket_art [2] ,NULL) ;

iniZ ialize_Zransition(rec_time2 ,TRAN world [28], 22,32) ;

add_pre_lisZ (& (world [28] .pre_places) ,&place_ptr_array [58] ,

&place_pzr_array [55] ,

NULL) ;

add_post_list (_(world[28] .post_places), _place_ptr_array [45] ,0,

_place_ptr_array [4] , socket_art [2] ,NULL) ;

iniZialize_transition(conZinue_vision,TPAN world [29], 2,12) ;

add_pre_ i isZ (_ (world [29] .pre_places) ,&place_pZr_array [30] ,

_place_pZr_array [62] ,

NULL) ;

add_post_list (_(world[29] .post_places) , _place_pZr_array [61], 0,

_place_pzr_array [16] ,sockeZ_arr [0], NULL) ;

init ialize_Zrans it ion (rec_t ime2, TRAN world [30], 2,22) ;

add_pre_l ist (& (world [30] .pre_places) ,&place_pZr_a/ray [3 i] ,

aplace_ptr_array [61] ,

NULL);

add_post_list (a (world [30] .post_places) , _place_p_r_array [33] ,O,

aplace_pZr_array [20] ,sockeZ_arr [0] ,NULL) ;

144

init ialize_transition(mot ion_task, TRAN world [31], 28,22) ;

add_pre_list (k (world [31]. pre_places) ,_place_ptr_array [46],

&place_ptr_array [33] ,

NULL) ;

add_post_list (& (world [31] .post_places) , &place_ptr_array [60], 0,

Eplace_ptr_array [5] ,socket_art [I] ,NULL) ;

initialize_transition(rec_time2,Tl_N world[32] ,32,26) ;

add_pre_list (& (world [32] .pre_places), &place_ptr_array [481 ,

&place_ptr_array [60],

NULL) ;

add_post_list (& (world [32] .post_places), _place_ptr_array [62], O,

&place_ptr_array [9] ,socket_art [i] ,NULL) ;

declare_enab_t okens (k (world [11]

declare_enab_t okens (& (world [13]

declare_enab_t okens (&(world [151

Approach, NULL) ;

decl are_ enab_t okens (& (world [161

Approach ,NULL) ;

declare_ enab_t okens (& (world [17]

Approach ,NULL) ;

declare_ enab_tokens (& (world [181

Approach, NULL) ;

declare_enab__ okens (k (world [0] .

declare_enab_t okens (& (world [1] .

decl are_ enab_t okens (& (world [2] .

,NULL) ;

dec! are_ enab __ okens

,NULL) ;

declare_enab__okens

,NULL) ;

decl are_ enab __ okens

dec iare_ enab __ okens

decl are_ enab_t okens

declare_ enab__ okens

declare_enab__okens

(a(world [5] .

(k (world [4] .

(&(world [231

(&(world [24]

(&(world [251

(a(world [291

(k(world[31]

.menu_requirements)

.menu_requirements)

.menu_requirements)

.menu_requirements)

.menu_requiremenCs)

.menu_requiremenCs)

menu_requirements),

menu_requirements),

menu_requirements),

menu_requiremenZs),

menu requiremenZs),

.menu_requirements),

.menu_requirements),

.menu_requirements),

.menu_requirements),

, CaiK, NULL) ;

, Move ,NULL);

, Move,

, Move,

, Move,

, Move,

CalV,NULL);

CalV, NULL);

Look, Find

Look, Find

Look, Find

KeI,NULL);

Grip,NULL);

Re!,NULL);

ConZi,NULL);

.menu_requirements), Slave,NULL);-

add_menu_cmnd(CalK);

add_menu_cmnd(CalV);

add_menu_cmnd(Move);

145

add_menu_cmnd(Rel);

add.menu_cmnd(Grip);

add_menu.cmnd(Move);

add_menu_cmnd(Approach);

add_menu_cmnd(Rel);

add_menu_cmnd(Look);

add_menu.cmnd(Find);

add_menu_cmnd(Move);

add_menu_cmnd(Find);

add_menu_cmnd(Move);

add_menu_cmnd(Move);

add_menu_cmnd(Approach);

place_place(30,O,lO);

place_place(31,O,20);

place_place(32,4,18);

place_place(33,4,28);

place_place(34,6,18);

place_place(35,8,18);

place_place(36,10,18);

place_place(37,12,18);

place_place(38,16,10);

place_place(39,18,8);

piace_place(40,22,0);

place_place(41,22,4);

place_place(42,22,8);

place_place(43

place_place(%4

place_place(45

place_place(46

place_place(48

place_place(50

place_place(51

place_place(52

place_place(53

place_place(54

place_place(55

place_place(56

place_place(57

place_place(58

,22,12);

,22,18);

,20,24);

,26,0);

32,4);

30,18);

30,20);

30,22);

30,26);

10,26);

!0,30);

!4,30);

18,30);

22,30);

place_place(59,24,24);

place_place(60,30,24);

place_place(61,2,18);

146

place_place (62,2,30) ;

place_place(O, 28,30) ;

pl_ce_pl_ce(4, 28,34) ;

place_place(5, 30,4);

place_place(9, 36,8);

place_place(16, 0,16);

place_place(20, 0,24) ;

}
void initialize_marking(){

add_token(40, I) ;

add_token(40,1) ;

add_token (40,1) ;

add_token(46, I) ;

add_token(46,1) ;

add_token(30, i) ;

add_token(30, i) ;

add_token (54, I) ;

add_token (54, I) ;

}

int release_menu()

rec_timel () ;

send_tape (socke__arr [2] ,AD_TAPE_END,

return(l);

}

GoPos,

int grasp_menu()

{
rec _time i () ;

send_tape (socket_arr [2] ,AD_TAPE_END,

Retur, NULL) ;

return (1) ;
}

Cross,

int cal ibrat e_menu ()

rec_t ime i () ;

send_t ape (socket_arr [0] ,AD_TAPE_END,

CalV, Ca_IV, Retur, NULL);

return (i) ;

Retur,

GoPos,

CalV,

NULL);

Ca_IV, CalV, CalV ,-

147

int f ind_menu ()

{

send_tape(socket_arr[0] ,AD_TAPE_END, Find, Retur, NULL);

return(1);

}

int look_menu()

{
send_tape(socket_arr[O] ,AD_TAPE_END, Look, Retur,

return (1) ;

}

NULL) ;

int vision_task()

{
rec_timel () ;

if (get_menu_value() == (int)Find) return(find_menu()) ;

else return(look_menu()) ;

}

int motion_task ()

{
rec_timel () ;

if (get_menu_value() == (in%) Move) return(move_menu());

else if (get_menu_value() =_ (int) Approach)

return (approach_menu ()) ;

else if (get_menu_value() == (int) Slave) return(move_menu());

else return(calr_menu()) ;

}

int calr_menu ()

{

send_tape(socket_arr[l] ,AD_TAPE_END, CalR, NULL);

return(1) ;

}

int approach_menu()

{

send_tape (socket_arr [1] ,AD_TAPE_END, Approach, NULL) ;

return(l) ;

}

in% move_menu()

148

{

}

send_tape(socket_arr[1] ,AD_TAPE_END, Move, NULL);

return (I) ;

int continue_vision()

{

rec_time1();

send_tape(socket_arr[0],AD_TAPE_IMMEDIATE, Conti, NULL);

return(l);

13.2 setup.arm.c

This file describes the Petri net for the Motion Coordinator.

ss

NOTICE OF COPYRIGHT

Copyright (C) Rensselaer Polytechnic Institute.

1990 ALL RIGHTS RESERVED.

** Permission to use, distribuze, and copy is granted QNLY

_* for research purposes, provided that this notice is

** displayed and the author is acknowledged.

** This software is provided in the hope that it will be

** useful. BUT, in no event will the authors or Rensselaer

*- be liable for any damages whatsoever, including any lost

** profits, lost monies, business interruption, or other

*- special, incidental or consequential damages arising out

.* of the use or inability to use (including but not

** limited %o loss of data or data being rendered

*- inaccurate or losses sustained by third parties or a

*_ failure of this software %o operate) even if the user

** has been advised of the possibility of such damages, or

** for any claim by any other par_y.

_* This software was developed at the facilities of the

** Center for Intelligent Robotic Systems for Space

*- Exploration, Troy, New York, thanks to generous project

_ funding by NASA.

149

_s

,1 Package: TokenPasser

*ffiFile: setup_arm.c

** Written By: Michael Mittmann

*= Date: 1/30/91

** Purpose: The purpose of the package can be found in the file

*ffi main. c.

** This file contains the statements needed to define a net

** identical to the one in -mittmann/nets/motion_full_io

** Modification History:

*/

#include <varargs. h>

_include "pet.h"

#include "pet2. h"

#include "dumb_dec .h"

_define NUM_TKANS 9

char title[] = {"Arm"};

exterR int socket_arr[J ;

int number_of_sockets = LOCAL_SOCKS;

int menu[SIZE_MENU],

int hum_transitions = NUM_TRANS;

strucZ place_pit place_ptr_array[16] ;

struct transition world[NUM_TRANS] ;

* make_net ()

* this routine just defines a net identical to the one described

* in the GreatSPNI.5 file motion_full_io.

- Ar&_/ments:none

* Returns:nothing

* Requirements: just about all of the routines linked to it ;-)

make_net ()

150

{
initialize_transition(dummy,TRAN world[0], 2,4) ;

add_pre_list (& (world [0] .pre.places), _place_ptr_array [5] ,

_lace_ptr_array [6] ,

NULL) ;

add_post_list (&(world [0]. post_places), &place_ptr_array [T] ,0,

ran.L) ;

initialize_transition(dummy ,TKAN world[l], 2,8) ;

add_pre_list (& (world [I] .pre_places), aplace_ptr_array [7],

l_u'L L) ;

add_post_list (_ (world [I]. post_places), aplace_ptr_array [8], 0,

NULL);

init ialize_transition(dummy, TBAN world [2], 6,8) ;

add_pre_l ist (& (world [2] .pre_places),

&place_ptr_array [7] ,_place_ptr_array [9] ,

NULL) ;

add_post_list (&(world[2] .post_places), &place_ptr_array [6] ,0,

• place_ptr_array [46] ,socket_arr [0] ,

&piace_ptr_array [48] ,

socket_art [0], NULL) ;

initialize_transition(dummy,TRAN world[3] ,6,10) ;

add_pre_list (& (world [3] .pre_places), _place_ptr_array [9] ,

&place_ptr_array [I0] ,

&place_ptr_array [II] , NULL) ;

add_post_list (&(world[3] .post_places), &place_ptr_array [6] ,0,

_place_ptr_array [46] ,socket_arr [0] ,

aplace_ptr_array [48] ,

socket _arr [0] ,NULL) ;

initialize_transition(dummy, TKAN world[4], 2,12) ;

add_pre_list (&(world[4] .pre_places) , _place_ptr_array [8] ,

NULL) ;

add_post_li st (& (world [4] .post.places), &place_ptr_array [13] ,0,

aplace_p:r_array [i0] ,0 ,NULL) ;

initialize_transition(dummy ,THAN world[5], 2,16) ;

add_pre_list (_ (world [5] .pre_places), _place_ptr_array [12] ,

&place_pit_array [!3] ,

NULL) ;

add_post_li st (_ (world [5]. post_places), &place_ptr_array [14], 0,

151

NULL);

initialize_transition(dummy,TRAN world[6] ,8,18) ;

add_pre_list (& (world [6] .pre_places), _place_ptr_array [15],

NULL) ;

add_post_list (& (world [6]. post_places), _place_ptr_array [I I] ,0,

_place_ptr_array[12], 0, NULL) ;

init ialize_trans it ion(dummy, TRAN world [7], 4,20) ;

add_pre_list (& (world [7] .pre_places), _place_ptr_array [15] ,

NULL) ;

add_post_list (&(world [7]. post_places), _place_ptr_a_-ray [14], O,

NULL) ;

initialize_transition(dummy,TRAN world[8] ,4,24) ;

add_pre_list (& (world [8] .pre_places), A_lace_ptr_array [14],

mmL) ;

add_post_lis% (& (world [8]. post_places), &place_pit_array [15] ,O,

gULL);

declare_enab_tokens (&(world [0] .menu_requirements), Move,

Approach, CalR,NULL) ;

place_place(5, 20,2);

place_place(6, 2, 2);

place_place(7, 2 ,6);

place_place(8, 2 ,10);

place_place(9, 20,6);

place_place(10,8,14);

place_place(ll,6,16);

place_place(12,4,14);

place_place(13,2,14);

place_place(14,2,22);

place_place(15,6,22);

place_place(46, 20,10);

place_place(48, 20,14);

}

void initialize_marking() {

add_token(6, I) ;

add__oken(9, I) ;

add__oken(12, i) ;

}

152

B.3 setup..grip.c

This file describes the Petri net for the Gripper Coordinator.

NOTICE OF COPYRIGHT

Copyright (C) Rensselaer Polytechnic Institute.

1990 ALL RIGHTS RESERVED.

*- Permission to use, distribute, and copy is granted ONLY

** for research purposes, provided that this notice is

** displayed and the author is ack-,owledged.

** This software is provided in the hope that it will be

-- useful. BUT, in no event will the authors or Re/Isselaer

*- be liable for any daumages whatsoever, including any lost

** profits, lost monies, business interl-_ption, or other

** special, incidental or consequential daunages aurising out

** of the use or inability to use (including but not

** limited to loss of data or data being rendered

** inaccurate or losses sustained by third par_ies or a

** failure of this software to operate) even if the user

** has been advised of the possibility of such damages, or

** for any claim by any other pa/-_y.

*- This software was developed az the facilities of the

** Center for Intelligent Robotic Systems for Space

** Exploration, Troy, New York, thanks to generous project

** funding by NASA.

ms

*" Package: Toke_asser

** File: setup_grip.c

** Written By: Michael Mittmauln

** Date: 1/30/91

.* Purpose: The purpose of the package can be found in the file

*- main.c.

*- This file contains the statements needed to define a net

** identical to the one in -mittmann/nets/grip.nonames_full_io

153

** Modification History:

*/

#include <varargs. h>

#include "pet.h"

#include "pet2.h"

#include "dumb_dec. h"

#define NUM_TRANS 8

chat" title[] = {"Gripper">;

ex_ern int socket_a/T[];

int number_of_sockets = LOCAL_SOCKS;

int menu[SIZE_MENU] ;

inZ hum_transitions = NUM_TP.ANS;

strucz place_pit place_pit_array[6] ;

struct transition world[NUM_TBANS] ;

/*

* make_aet ()

* this routine just defines a net identical to the one described

* in the GreatSPN1.5 file grip.nonames_full_io

. Arguments:none

* Returns:nothing

* Requirements: just about all of _he routines linked to it ;-)

make_net ()

<
initialize__ransition(dummy ,TKAN world[0], 2,4) ;

add_pre_lisZ (a (world [0] .pre_places) , _place_ptr_array [0] ,

aplace_ptr_array [i] ,

NULL) ;

add_post_list (a(world[0] .post_places), _place_ptr_a/ray [2] ,0,

NULL) ;

initialize_zransiZion(dummy,TKAN world[l], 2,8) ;

add_pre_list (_ (world [I] .pre_places), _place_ptr_array [2] ,

NULL) ;

add_post_list (&(world [I] .post_places), &place_pit_array [3] ,0,

NULL) ;

154

initialize_transition(dummy,TRAN world[2] ,4,8) ;

add_pre_list (& (world [2] .pre_places), _place_ptr_array [2] ,

NULL) ;

add_post_list (_(world[2] .post_places), &place_ptr_array [3] ,0,

NULL) ;

initialize_transition(dummy ,TRAN world [3], 6,8) ;

add_pre_list (& (world [3] .pre_places), _place_ptr_array [2] ,

•uLL) ;

add_post_list (&(world [3] .post_places), &place_ptr_array [3] ,0,

N'ULL);

initialize_transition(dummy,TKAN world[4] ,8,8) ;

add_pre_list (& (world [4] .pre_places), aplace_ptr_array [2] ,

NULL) ;

add_post_list (&(world[4] .post_places), &place_pit_array[3] ,0,

NULL) ;

initialize_transition(dummy,TRAN world[5] ,i0,8) ;

add_pre_list (_ (world [5] .pre_places) , _lace_ptr_array [2] ,

NULL) ;

add_post_list (_(world[5] .post_places), &place_p_r_array[3], 0,

I_LrLL) ;

initialize_transition(dummy,TRAN world[6], 2,12) ;

add_pre_list (& (world [6] .pre_places) , _place_ptr_array [3] ,

&place_p_r_array [4] ,

• J:.L);

add_post_list (& (world [6] .post_places), &place_ptr_array [54] ,

socket_arr [0] ,

Rplace_ptr_ array [i] ,O,

_place_pt r_array [55] ,socket_arr [0] ,NULL) ;

ini:ialize_transition(dummy,TKAN world[T], 14,8) ;

add_pre_list (& (world [7] .pre_places) , &place_pit_array [3] ,

NULL) ;

add_post_!is_ (a(world[7] .post_places), &place_ptr_array [2] ,O,

NULL) ;

declare_enab_tokens(&(wor!d[l].menu_requirements), MeaFo, NULL);

declare_enab_Zokens(&(world[2].menu_requirements), GoFor, NULL);

declare_enab_tokens(&(world[3].menu_requirements), MeaPo, NULL);

declare_enab_Zokens(a(world[4].menu_requirements), GoPos, NqJLL);

155

declare_enab_tokens(&(world[5] .menu_requirements), Cross, NULL) ;

declare_enab_tokens (&(_orld [6] .menu_requirements), Hetur, NULL) ;

place_place(0, 20,2) ;

place_place(l, 2, 2);

place_place(2, 2 ,6);

place_place(3, 2 ,10) ;

place_place(4, 20,I0) ;

place_place(54, 20,14) ;

place_place(55, 20,16) ;

}

void initialize_marking() {

add__oken(l, 1) ;

add_token(4, I) ;

}

B.4 setup_vision.c

This file describes the Petri aet for the Visioa Coordinator.

/*

NOTICE OF COPYRIGHT

Copyright (C) _ensselaer Polytechnic Institute.

1990 ALL BIGHTS RESERVED.

** Permission Zo use, disZribuZe, and copy is granted ONLY

** for research purposes, provided zhaZ _his notice is

** displayed and the author is acknowledged.

** This software is provided in the hope that it will be

** useful. BUT, in no event will _he authors or Kensselaer

** be liable for any damages whatsoever, including any lost

** profits, lost monies, business inZerrup_ion, or other

** special, incidental or consequential damages arising out

** of the use or inabiliZy Zo use (including but not

** limited _o loss of daZa or da_a being rendered

.. inaccurate or losses sustained by third par_ies or a

** failure of zhis software to operate) even if _he user

.. has been advised of the possibility of such damages, or

** for any claim by any oZher party.

156

•= This software was developed at the facilities of the

•1 Center for Intelligent Robotic Systems for Space

,= Exploration, Troy, New YorE, thanks to generous project

•* funding by NASA.

•1 Package: TokenPasser

•1 File : setup_vision, c

• * Written By: Michael Mittmann

•* Date: 1/30/91

,1 Purpose: The purpose of the package can be found in the file

• * main. c.

• * This file contains the definitions needed to define a vision

• * net identical to the one in "mit%mann/nets/visionS_full_io.

• * Modification History:

*/

#include <varargs. h>

#include "pet.h"

_include "pet2 .h"

#include "dumb_dec.h"

#define NUM_TRANS 16

char title[] ={"Vision"};

exZern int socket_arT[] ;

inZ orotund_arm() ;

int number_of_sockets = LOCAL_SOCKS;

int menu[SIZE_MENU] ;

int hum_transitions = NUM_TBANS;

struc: place_pit place_pit_array [32] ;

struc% transition world[NUM_TRANS] ;

/*

* make_net()

* this routine just defines a net identical to the one described

* in the GreaZSPN1.5 file vision3_full_io

* Arguments:none

157

* Returns:nothing

* Requirements: just about all of the routines linked to it ;-)

-_/

make_net()
{

init ialize_transition(dummy ,TKAN world [0], 18,4) ;

add_pro_list (E (world [0] .pro_places) , _place_ptr_array [16],

&place_ptr_array [17] ,

NULL) ;

add_post_list (_(world[O] .post_places), &place_ptr_array [19] ,0,

NULL) ;

initialize_transition(dummy,TRAN world[l] ,8,4) ;

add_pro_list (_ (world [I] .pre_places), _place_ptr_azray [16],

&place_ptr_array [17] ,

NULL) ;

add_post_li st (_ (world [i] .post_places), _place_ptr_array [18] ,0,

NULL) ;

initialize_transition(dummy,TKAN world[2] ,2,16) ;

add_pro_list (&(world [2] .pro_places), _place_ptr_array [16] ,

&place_ptr_array [17],

NULL) ;

add_post_list (&(wor!d[2] .post_places), &place_p_r_array [24] ,0,

NULL) ;

initialize_transition(dummy ,TRAN world[3] ,12,8) ;

add_pre_lis_ (&(world[3] .pre_places) , _place_ptr_array [19] ,

NULL) ;

add_post.li st (& (world [3] .pos__places), _place_ptr_array [18] ,0,

NULL);

initialize__ransition(dummy,TRAN world[4], 18, I0) ;

add_pre_lisZ (R (world [4] .pre_places), &place_ptr_array [19] ,

&place_p_r_ array [20] ,

NULL) ;

add_pose_list (&(world [4] .pos__places), _place_p_r_array [17] ,O,

_place_ptr_array [30] ,socke__arr [0] ,

aplace_pZr_array [51] ,sockez_arr [0], NULL) ;

ini_ialize_transi_ion(cmmnd_arm,TRAN world[5] ,8,12) ;

add_pre_list (a (world [5] .pre_places) , _place_p=r_array [18] ,

158

&place_pZr__rray [20] ,

NULL);
add_po sZ_li s% (& (world [5] .po sZ_places), @place_p%r_array [22], 0,

&place_p%r_aurray [30] , socket_arr [0] ,

&place_p_r_array[31] , sockez_arr[0], NULL) ;

initialize_tr_usition(dummy,TRAN world[6] ,0,0) ;

iniZialize_tr_nsition(dummy,TRAN world[7], 12,12) ;

add.pre_lis_ (& (world [7] .pre_places) , i_place_ptr_array [163 ,

N LL);
add_posZ_lis_ (&(world [7] .posZ_places), @place_ptr_array [231,0,

NULL) ;

iniZialize_tramsition(dummy,TRAN world[8] ,8,16) ;

add_pre_lis_ (& (world [8] .pre_places) , _place_p_r_array [22],

@place_p_r_array [23] ,

NULL) ;

add_pos%_list (& (world [8] .posZ_places), _place_ptr_ax-ray [24] ,0,

NULL) ;

iniZialize_tr_nsition(dummy ,TKAN world[9], 8,20) ;

add.pre_lis_ (& (world [9] .pre_places) , _place_p_r_array [24],

• place_p_r_array [28] ,

rOLL) ;
add_posZ_lisZ (&(world [91 .posz_p!aces), _place_pZr_array [25] ,0,

NULL) ;

iniZialize_ZramsiZion(dummy,TRAN world[10] ,18,20) ;

add_pre_l is_ (& (world [i0] . pre_places),

aplace_ptr_array [20] ,aplace_ptr_array [22] ,

&place_ptr_array[23] , NULL) ;

add_post_lisZ (&(world [i0] .posZ_places) , aplace_pZr_array [17] ,0,

&place_pZr_array [30] , sockez_arr [01 ,

aplace_pZr_array [311 ,

socket_arr [0] ,NULL) ;

iniZialize_tr_nsiZion(dummy ,TKAN world[ll] ,8,24) ;

add_pre_list (a (world [i11 .pre_places) , aplace_pZr_array [251 ,

NULL) ;

add_posZ_lisZ (_ (world [111 .po sZ_places) , _place_pZr_array [26] ,0,

NULL);

159

iniZialize_transition(dummy,TRAN world[12] ,8,28) ;

add_pro_list (a (world [12]. pro_places), &place_pit_array [26],

NULL);
add_post_list (&(world [12] .po st_places), _place_ptr_array [29], 0,

NULL) ;

initialize_transition(dummy,TRAN world[13] ,8,32) ;

add_pre_list (&(world [13] . pre_places) , _place_ptr_array [20] ,

&place_pit_array [29], NULL) ;

add_post_list (&(world[13] .post_places) , _place_ptr_array [17] ,0,

aplace_ptr_array [28] ,0,

&place_ptr_array [30] ,socket_art [0] ,

K-place_pit_array [31] ,

socket_arr [0] ,NULL) ;

initialize_transition(dummy,TRAN world[14] ,4,28) ;

add_pro_list (& (world [14] .pre_places) , &place_ptr_array [26] ,

NULL);
add_post_list (& (world [14] .post_places) , _place_ptr_array [27] ,0,

aplace_ptr_array [18] ,0, NULL) ;

initialize_transition(dummy,TKAN world[15] ,4-,32) ;

add_pro_list (&(world [15] . pre_places) , &place_ptr_array [27] ,

NULL) ;

add_post_list (&(world[15] .post_places), aplace_ptr_array [28], 0,

NULL) ;

declare_enab_tokens (a(world [0] .menu_requlrement s) ,

declare_enab_tokens (a(world [!] .menu_requmrement s) ,

declare_enab_tokens (a (world [2] .menu_requlrement s) ,

declare_enab_t okens (a(world [4] .menu_requlrements) ,

declare_enab_Zokens (a(world [7] .menu_requlrements) ,

Look, NULL) ;

CalV, NULL) ;

Find, NULL) ;

Retur, NULL) ;

Conti, NULL) ;

declare_enab_tokens (& (world [8] .menu_requlremenZs), CalV ,-NULL) ;

declare_enab_tokens (_(world[10] .menu_requirements) , Retur, NULL) ;

declare_enab_tokens (a(world [12] .menu_requirements) , Ketur, NULL) ;

place_place(16,28,2);

place_place(17,8,2);

place_place(18,8,10);

place_place(19, 18,6);

place_place(20, 28,8);

160

place_place(22,8,14);

place_place(23,12,14);

place_place(24,8,18);

place_place(25,8,22);

place_place(26,8,26);

place_place(2Z,4,30);

place_place(28,4,34);

place_place(29,8,30);

place_place(30, 28,22);

place_place(31, 28,34);

}

void initialize_marking() {

add_token(I7, i) ;

add_token(20, I) ;

add_token(28,1);

}
int

{
cmmnd_arm()

send_t ape (socket_art [0] ,AD_TAPE_ IMMEDIATE,

NULL) ;

return (I) ;

Conti, Slave,

